博碩士論文 108525008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:18.220.63.52
姓名 黃祺淵(Chi-Yuan Huang)  查詢紙本館藏   畢業系所 軟體工程研究所
論文名稱 低軌衛星網路之分散式路由演算法
(DEAL: Distributed Energy-Aware Load Balancing Routing Algorithm for LEO Satellite Network)
相關論文
★ TrustFURE: 軟體定義衛星之防竄改系統★ 基於OP-TEE的可信應用程式軟體生態系統
★ SeFence: 基於安全感測的可信任周邊存取控制★ 高解析度二維地理影像的三維建模:旋轉變換投影與傳統方法的比較研究
★ 在低軌道衛星無線通訊中的CSI預測方法★ 為多流量低軌道衛星系統提出的動態換手策略
★ 基於Trustzone的智慧型設備語音隱私保護系統★ 一種減輕LEO衛星網路干擾的方案
★ TruzGPS:基於TrustZone的位置隱私權保護系統★ 衛星地面整合網路之隨機接入前導訊號設計與偵測
★ SatPolicy: 基於Trustzone的衛星政策執行系統★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統
★ 衛星地面網路中基於物理層安全的CSI保護方法★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸
★ 低軌道衛星地面網路中的DRX機制設計★ 衛星地面整合網路之基於集合系統的前導訊號設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著網絡流量需求的上升,具有較低延遲特性的LEO衛星網絡的研究越來越受到關注。衛星軌道的周期可分為兩個:日光週期和日蝕週期。在日蝕週期期間,衛星僅由電池供電。過度使用電池會導致放電深度變深,造成電池壽命變短。在本論文中,我們提出了一種負載均衡最短路徑路由法。每顆衛星根據能量狀態、衛星間鏈路的不穩定性、擁塞程度和路由長度選擇下一跳。並且基於歷史流量分佈,仿真結果表明我們的方法可以成功地延長衛星電池的壽命,降低擁塞程度和最大鍊路利用率。
摘要(英) With the rise of network traffic demand, low-latency LEO satellite networks have become more popular. The period of the satellite orbit can be divided into two: the sunlight period and the eclipse period. In the eclipse period, the satellite is only powered by its battery. Overusing a battery will lead to a high depth of discharge and a short lifetime of the battery. In this thesis, we proposed a load balance shortest-path routing algorithm. Each satellite chooses the next hop according to energy status, instability of inter-satellite link, congestion level, and route length. And based on the historic traffic distribution, the simulation results showed our method can successfully prolong the lifetime of the satellite battery, reduce the congestion level and the maximal link utilization.
關鍵字(中) ★ 衛星
★ 路由
★ 低軌衛星
★ 軌道
★ 電池
關鍵字(英) ★ Satellites
★ Routing
★ Low earth orbit satellites
★ Orbits
★ Batteries
論文目次 中文摘要i
Abstract ii
致謝iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
1.1 Limits of LEO satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Benefits of saving satellite’s energy . . . . . . . . . . . . . . . . . . . . 2
1.3 Routing on satellite network . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Related Work 5
2.1 Energy Efficiency in Satellites . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Routing in Satellite Networks . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Energy-Efficient Routing in the LEO network . . . . . . . . . . . . . . . 7
3 System Model 9
3.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Traffic Density Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Methodology 14
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 ISL Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Energy Burden of Satellite . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.1 Energy level of satellite . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Orbit Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4 Congestion Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Performance Evaluation 25
5.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Impact of Queue Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Impact of Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Impact of Link Utilization . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Impact of End-to-End Delay . . . . . . . . . . . . . . . . . . . . . . . . 34
6 Conclusion 36
Bibliography 36
參考文獻 [1] Y. Rao and R.-C. Wang, “Agent-based load balancing routing for LEO satellite networks,”
Comput. Netw., vol. 54, no. 17, pp. 3187–3195, 2010.
[2] “Cisco space router,” 2009, [Online]. Available: http://www.cisco.com/web/ strategy/docs/gov/Cisco_Space_Router.pdf.
[3] P. Shriver, “Opening the door to smart power management in small satellites,” Small Satellite Conference, 2003.
[4] Y. Yang, M. Xu, D. Wang, and Y. Wang, “Towards energy-efficient routing in satellite networks,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 12, pp. 3869–3886, 2016.
[5] P. A. Taylor, “Why are launch costs so high?” 2004, [Online]. Available: http://
home.earthlink.net/%7Epeter.a.taylor/launch.htm.
[6] J. Lee, E. Kim, and K. G. Shin, “Design and management of satellite power systems,”
IEEE Real-Time Systems Symposium, pp. 97–106, 2013.
[7] A. C. Fu, E. Modiano, and J. N. Tsitsiklis, “Optimal energy allocation and admission control for communications satellites,” IEEE/ACM Transactions on Networking, vol. 11, no. 3, pp. 488–500, 2003.
[8] M. Gatzianas, L. Georgiadis, and L. Tassiulas, “Control of wireless networks with rechargeable batteries,” IEEE Transactions on Wireless Communications, vol. 9, no. 2, pp. 581–593, 2010.
[9] S. Wei, H. Cheng, and S. Li, “The optimal income method for routing of LEO satellite network based on cooperative game, china,” Patent, CN107733518A, Sep.2017.
[10] X. Liu, S. He, Y. Wu, Z. Li, Z. Jiang, C. Liu, and Y. gu, “Based on the low complex degree load balance routing algorithms of LEO satellite network,” Patent, CN105227483A, Aug. 2015.
[11] Z. Qi, Y. L. Song, and H. Z. Zhou, “A kind of method and device based on LEO mobile satellite communication system,” Patent, CN107592153A, Aug. 2016.
[12] S. Wei, H. Cheng, Z. Shi, and R. Zhao, “Distributed node adaptive routing algorithm towards LEO satellite network,” Patent, CN106656302B, Sep. 2016.
[13] H. Qu, J. Zhao, P. Yue, X. Liu, M. Wang, and K. Wang, “A kind of LEO satellite network link switching management method based on link remaining time,” Patent, CN106230719A, Jul. 2016.
[14] L. Sun, Q. Ba, J. Zhou, J. Wang, C. han, and F. Xiao, “Low-track satellite network routing policy based on membership function,” Patent, CN110336751A, Jul. 2019.
[15] W. E. S. Narayanan Natarajan, Anindo Bagchi, “Method and system for determination of routes in leo satellite networks with bandwidth and priority awareness and adaptive rerouting,” Patent, US20120263042A1, Oct. 2010.
[16] T. Pan, T. Huang, X. Li, Y. Chen, W. Xue, and Y. Liu, “OPSPF: Orbit prediction shortest path first routing for resilient leo satellite networks,” IEEE International Conference on Communications (ICC), pp. 1–6, 2019.
[17] M. Hussein, A. Abu-Issa, and I. Elayyan, “Location-aware load balancing routing protocol for LEO satellite networks,” International Conference on Advanced Communication Technologies and Networking (CommNet), pp. 1–7, 2018.
[18] L. Hao, P. Ren, and Q. Du, “Satellite QoS routing algorithm based on energy aware and load balancing,” International Conference on Wireless Communications and Signal Processing (WCSP), pp. 685–690, 2020.
[19] X. Ren, Y. Yang, J. Zhu, and T. Xu, “Orbit determination of the Next-Generation Beidou satellites with intersatellite link measurements and a priori orbit constraints,” Advances in Space Research, vol. 60, no. 10, pp. 2155–2165, 2017.
[20] B. Yeo and L. Turner, “An approach to the modeling of counter-rotating seam communication links for LEO satellite systems,” IEEE Wireless Communications and Networking Conference, vol. 4, pp. 2016–2020, 2004.
[21] H. Song, S. Liu, X. Hu, X. Li, and W. Wang, “Load balancing and QoS supporting access and handover decision algorithm for GEO/LEO heterogeneous satellite networks,” IEEE International Conference on Computer and Communications (ICCC), pp. 640–645, 2018.
[22] K. Riesing, “Orbit determination from two line element sets ofISS-deployed Cube- Sats,” Small Satellite Conference, 2015.
[23] D. Vallado and P. Crawford, “SGP4 orbit determination,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, p. 6770, 2008.
[24] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations,” Survey review, vol. 23, no. 176, pp. 88–93, 1975.
[25] W. Juan, Z. Jian, S. Lijuan, H. Chong, and X. Fu, “Link stability based comprehensive weighted strategy for inter-satellite link assignment,” Seventh International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), pp. 149–154, 2015.
[26] Z. Yuan, Z. Liu, and J. Zhang, “Inter-satellite link design for the Leo/Meo twolayered satellite network,” International Conference on Wireless Communications, Networking and Mobile Computing, vol. 2, pp. 1072–1075, 2005.
[27] M. Ismail, A. Bakry, H. Selim, and M. Shehata, “Eclipse intervals for satellites in circular orbit under the effects of Earth’s oblateness and solar radiation pressure,” NRIAG Journal of Astronomy and Geophysics, vol. 4, no. 1, pp. 117–122, 2015.
[28] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav et al., “CONGA: Distributed congestion-aware load balancing for datacenters,” ACM conference on SIGCOMM, pp. 503–514, 2014.
[29] “Real-time latency: Rethinking remote networks,” 2020, [Online]. Available: https: //www.telesat.com/wp-content/uploads/2020/07/Real-Time-Latency_HW.pdf.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2021-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明