博碩士論文 108553014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:18.118.184.102
姓名 吳宇軒(Yu-Hsuan Wu)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 應用於5G與LTE之攜帶式裝置天線設計
(Antenna Design for 5G and LTE of Mobile Device)
相關論文
★ 運用SIFT特徵進行光學影像目標識別★ 語音關鍵詞辨識擷取系統
★ 適用於筆記型電腦之WiMAX天線研究★ 應用於凱氏天線X頻段之低雜訊放大器設計
★ 適用於802.11a/b/g WLAN USB dongle曲折型單極天線設計改良★ 應用於行動裝置上的雙頻(GPS/BT)天線
★ SDH設備單體潛伏性障礙效能分析與維運技術★ 無風扇嵌入式觸控液晶平板系統小型化之設計
★ 自動化RFID海關通關系統設計★ 發展軟體演算實現線性調頻連續波雷達測距系統之設計
★ 近場通訊之智慧倉儲管理★ 在Android 平台上實現NFC 室內定位
★ Android應用程式開發之電子化設備巡檢★ 鏈路預算估測預期台灣衛星通訊的發展
★ 在中上衰落通道中分集結合技術之二階統計特性★ 先進長程演進系統中載波聚合技術的初始同步
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-5-20以後開放)
摘要(中) 本論文提出應用於LTE與5G之攜帶式裝置多頻段天線設計,以及操作於5G之多頻段天線。設計為求普及性,其空間與尺寸參考蘋果手機IPHONE11。

  第一隻天線操作於LTE頻段Band1、3、5、13、14、20、38 (1920~2170MHz、1710~1880MHz、824~894MHz、746~787MHz、758~798MHz、791~862MHz、2570~2620MHz)以及5G頻段N46、N47、N79 (5150~5925MHz、5855~5925MHz、4400~5000MHz),其設計方法透過與接地面積的距離耦合,以及在迴路上做延伸的方式產生共振,可操作於低中高三頻帶。

  第二支天線操作於N41、N71、N77、N78、N79(2496~2690MHz、617~698MHz、3300~4200MHz、3300~3800MHz、4400~5000MHz),其設計方式是透過在迴路上增加一路徑與低頻路徑相互耦合,產生中高模態,再由饋入端旁,產生一結構,優化阻抗匹配性。

  本論文提出的兩隻天線在設計上都有良好的輻射表現,整體輻射效率42%~79%,在設計上皆保有輕薄短小之特性,可應用於現行的無線通訊產業中。
摘要(英) This thesis proposes designs of multi-band antennas for LTE and 5G mobile devices, and 5G multi-band antennas. For popularity, the size and space follow APPLE Cellphone-IPHONE11.

  The first antenna is used in LTE frequency Band1, 3, 5, 13, 14, 20, 38 (1920~2170MHz, 1710~1880MHz, 824~894MHz, 746~787MHz, 758~798 MHz, 791~862MHz, 2570~2620MHz) and 5G frequency band N46, N47, N79 (5150~5925MHz, 5855~5925MHz, 4400~5000MHz). The design method is coupled with the distance from the grounding area. In addition, it has resonance by extending traces in the antenna loop.

  The second antenna is used in 5G band N41, N71, N77, N78, N79 (2496~2690MHz, 617~698MHz, 3300~4200MHz, 3300~3800MHz, 4400 ~5000MHz). The design method is to add a path in antenna trace to couple with the low-frequency path. It produces some middle to high band resonances. A structure is inserted between feedings to optimize impedance matching.

  This thesis proposes two antennas have good performance, the overall radiation efficiency is 42%~79%. Both of antennas are short and small, it widely used in current wireless communication industry.
關鍵字(中) ★ 天線 關鍵字(英) ★ 5G
論文目次 摘要……………………………………………………………………………………………………I
Abstract………………………………………………………………………………………II
誌謝…………………………………………………………………………………………………III
目錄……………………………………………………………………………………………………IV
圖目錄………………………………………………………………………………………………VI
第一章 緒論
1-1研究動機…………………………………………………………………………………1
1-2研究目的…………………………………………………………………………………2
1-3章節介紹…………………………………………………………………………………4
第二章 天線基本原理
2-1 基礎理論…………………………………………………………………………….5
2-2偶極天線…………………………………………………………………………………6
2-3平面倒F天線…………………………………………………………………………8
2-4天線重要參數………………………………………………………………………9
2-4-1反射損耗……………………………………………………………………………9
2.4.2天線增益……………………………………………………………………………10
2.4.3 天線效率…………………………………………………………………………10
2.4.4 場型……………………………………………………………………………………11
第三章 應用於5G與LTE之多頻段天線設計
3.1 設計簡述………………………………………………………………………………12
3.2 天線基礎結構………………………………………………………………….…….13
3.3參數分析…………….…………………………………………………………….…….14
3.3.1 天線結構分析………………………………………………………………..…15
3.3.2 表面電流分析圖………………………………………………………………16
3.3.3 天線輻射場型圖………………………………………………………………19
3.4量測與比對
3-4-1天線效率與增益模擬量測分析……………………………………………26
3-4-2 3D輻射場型圖………………………………….……………………………….32
第四章 應用於5G之行動裝置多頻天線設計
4.1 設計簡述………………………………………………………………………………33
4.2天線基礎結構…………………………………………………………………………34
4.3參數分析…………………………………………………………………………………35
4.3.1表面電流分析圖………………………………………………………………37
4.3.2天線輻射場型圖………………………………………………………………40
4-4量測與比對
4-4-1天線參數分析比對……………………………………………………………48
4-4-2 3D輻射場型圖………………………………………………………………54
第五章 結論…………………………………………………………………………………55
參考文獻…………………………………………………………………………………………56
參考文獻 [1] M.Alibakhshikenari, S.M.Moghaddam, A.U.Zaman, J.Yang, B.S. Virdee and E.Limiti "Wideband Sub-6 GHz self-grounded bow-tie Antenna with new feeding mechanism for 5G communication systems," European Conf. on Antennas and Propag. conf. June 2019.
[2] K. Jha and S. Sharma, "Combination of MIMO antennas for handheld devices," IEEE Antennas Propag. Mag., vol. 60, pp. 118-131, Feb. 2018.
[3] K. L. Wong, J. Y. Lu, L. Y. Chen, W. Y. Li, and Y. L. Ban,"8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microwave Opt. Technol. Lett., vol. 57, pp. 174-181, Jan.2016.
[4] S. Zhang and G. Pedersen, "Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line," IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 166-169, May. 2015.
[5] S. Zhang, K. Zhao, Z. Ying, and S. He, "Adaptive quad-element multi-wideband antenna array for user-effective LTE MIMO mobile terminals," IEEE Trans. Antennas Propag., vol. 61, pp. 4275-4283, Apr. 2013.
[6] C. Huang and P. Chiu, "Dual-band monopole antenna with shorted parasitic element," Electron. Lett., vol. 41, no. 21, pp. 1154-1155, Oct. 2005.
[7] K. L. Wong and P. W. Lin, "Compact dual-antenna with pi-shape grounded strip for enhanced bandwidth and decreased coupling for LTE tablet computer application," Microwave Opt. Tech. ,vol. 57, pp. 104-111, Jan. 2015.
[8] Y. Li, C. Sim, Y. Luo, and G. Yang, "12-port 5G massive MIMO antenna array in sub-6GHz mobile handset for LTE bands 42/43/46 applications," IEEE Access, vol. 6, pp. 344-354, Oct. 2017.
[9] S. Shoaib, I. Shoaib, N. Shoaib, X. Chen, and C. Parini, "MIMO antennas for mobile handsets," IEEE Antennas Wireless Propag. Lett, vol. 14, pp. 799-802, Dec. 2014.
[10] Y. Wang and Z. Du, "A printed dual-antenna system operating in the GSM1800/GSM1900/UMTS/LTE2300/LTE2500/2.4-GHz WLAN bands for mobile terminals," IEEE Antennas Wireless Propag. Lett., vol.13, pp. 233-236, Jan. 2014.
[11] Q. H. Le et al. "DC-110 GHz characterization of 22FDX® FDSOI Transistors for 5G transmitter front-end," European Solid-State Device Research Conf. Sep. 2019.
[12] J. H. Lu and B. J. Huang,"Planar compact slot antenna with multi-band operatio for IEEE 802.16 m application," IEEE Trans. Antennas Propag., vol. 61, no. 3, pp. 1411-1414, Mar. 2013.
[13] P. Gao, L. Xiong, J. Dai, S. He and Y. Zheng, "Compact printed wide-slot UWB antenna with 3.5/5.5-GHz dual band-notched characteristics," IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 983-986, Aug. 2013.
[14] Y. J. Chen, T. W. Liu and W. H. Tu, "CPW-fed penta-band slot dipole antenna based on comb like metal sheets," IEEE Antennas and Wireless Propag. Lett., vol. 99, pp. 1-1, May. 2016.
[15] Y. Li, C. Sim, Y. Luo and G. Yang, "Multiband 10-antenna array for Sub-6 GHz MIMO applications in 5G smartphones," IEEE Access, vol. 6, pp. 28041-28053, May. 2018.
[16] R. Wu, P. Wang, Q. Zheng and R. Li, "Compact CPW-fed triple band antenna for diversity applications," Elect. Lett, vol. 56, no. 10, pp. 735-736, May. 2015.

[17] K. L. Wong and J. Y. Lu,"3.6-GHz 10-antenna array for MIMO operation in the smartphone," Microwave Opt. Technol. Lett., vol. 5, pp. 1699-1704, Jul. 2015.
[18] K. L. Wong, Y. C. Chen, and W. Y. Li, "Four LTE low-band smartphone antennas and their 4 × 4 MIMO performance with user’s hand presence," Microwave Opt. Technol. Lett. vol. 58, pp. 2046-2052, Sep. 2016.
[19] Y. L. Ban, S. Yang, Z. Chen, K. Kang, and J. Li, "Decoupled planar WWAN antennas with T-shaped protruded ground for smartphone applications," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 483-486, Mar. 2014.
[20] Y. J. Chen, T. W. Liu and W. H. Tu, "CPW-Fed Penta-Band Slot Dipole Antenna Based on Comb Like Metal Sheets," IEEE Antennas and Wireless Propag. Lett., vol. 99, pp. 1-1, May. 2016.
[21] R Willmot, D. Kim, and D. Peroulis, "A yagi–uda array of high-efficiency wire-bond antennas for on-chip radio applications, "IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 3315–3321, Dec. 2009.
[22] X. Bai, J. Tang, X. Liang, J. Geng, and R. Jin, "Compact design of triple-band circularly polarized quadrifilar helix antennas," IEEE Antennas Wireless Propag. Lett., vol. 13, pp. 380–383, Feb. 2014.
[23] C. Liu, Y.-X. Guo, X. Bao, and S.-Q. Xiao, "60-GHz LTCC integrated circularly polarized helical antenna array," IEEE Trans. Antennas Propag., vol. 60, no. 3, pp. 1329-1335, Mar. 2012.
[24] C. Yu, Y. Tu, Y. Zhang, X. He. and Y. Li "An improved cavity -perturbation approach for simultaneously measuring the permittivity and permeability of magneto-dielectric materials in Sub-6G," IEEE Access. vol. 9, pp. 14807-14815, Jan. 2021.
指導教授 林嘉慶(Chia-Ching Lin) 審核日期 2021-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明