博碩士論文 106553019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:3.149.235.175
姓名 李岳霖(Li-Yueh-Lin)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 使用差值編碼技術隱藏AMBTC壓縮影像數據以實現高質量影像
(AMBTC Compressed Image Data-Hiding for High Image Quality Using Difference Encoding Strategy)
相關論文
★ 利用二元關聯法之簡易指紋辨識★ 使用MMSE等化器的Filterbank OFDM系統探討
★ Kalman Filtering應用於可適性載波同步系統之研究★ 無線區域網路之MIMO-OFDM系統設計與電路實現
★ 包含通道追蹤之IEEE 802.11a接收機設計與電路實現★ 時變通道下的OFDM傳輸系統設計: 基於IEEE 802.11a標準
★ MIMO-OFDM系統各天線間載波頻率偏差之探討 與收發機硬體實現★ 使用雜散式領航訊號之DVB-T系統通道估測演算法與電路實現
★ 數位地面視訊廣播系統同步模組 之設計與電路實現★ 適用於移動式正交分頻多工通訊系統的改良型時域通道響應追蹤演算法
★ 正交分頻多工系統通道估測基於可適性模型化通道參數估測★ 以共同項載波頻率偏移補償於正交分頻多重存取系統中減少多重存取干擾之方法
★ 正交分頻多工系統之資料訊號裁剪雜訊消除★ 適用於正交分頻多工通訊系統的改良型決策反饋之卡爾曼濾波通道估測器
★ 半盲目通道追蹤演算法使用於正交分頻多工系統★ 正交分頻多重存取以共同項載波頻率偏移補償以達到最小均方誤差之方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
在資訊發達的數位時代,隨著網際網路的普及,任何的數位資訊都能透過網際網路廣泛地傳播與散佈,然而享受數位科技帶來的便捷與商機時,有些潛在的問題,比如隱私權及智慧財產權侵犯,著作物的違法複製、歪曲、偽造、割裂或篡改,資料竊取、竊聽與偷窺等,因此,要如何保護數位資料在網路上傳輸時的安全,便成為現今數位時代不容忽視的重要議題。
近年來,資訊安全技術不斷的被學者所提出,例如:密碼學、機密共享及資訊隱藏等,各種資訊安全皆有不同的優缺點。例如,傳送方將數位資料以金鑰加密產生密文,密文透過網路傳送到接收方,再以相同的金鑰做解密,以取得機密資料。且因駭客沒有金鑰可以解密,但駭客可以攔截並破壞機密資料,再將已破壞的機密資料傳送給接收方,如此接收方即使有金鑰也無法還原原始機密。
為了解決這樣的問題,已有眾多學者提出資訊隱藏的概念,當資訊隱藏在嵌入更多的機密數據及數值較大的情況下,本文提出了運用差值編碼實現高品質偽裝影像資訊隱藏方法。該方法使用局部特徵和全域特徵,鄰近機密數據將大多數機密數據轉換為較小的值。反之,一些機密數據被轉換為較大的值。由於嵌入較小的值不會引起嚴重的圖像失真問題,因此,在具有相同嵌入率的情況下,該方法的圖像質量高於以前的方法。
關鍵詞:資訊隱藏、動能絕對值區塊截短碼、PSNR值、差異擴張法。
摘要(英) Abstract
Any digital information can be transmitted widely by internet as Internet become universal. It implies that the digital techniques make that life become convenience. However, there are some potential issues, e.g., private, copyright protection, information copy, tampering, and so on. Therefore, how to protect the digital data transmitted on Internet becomes an important issue.
Recently, information security techniques have been proposed continually, e.g., cryptography, secret sharing, and data hiding. Each information security technique owns different advantages and disadvantages. For example, a sender used key to encrypt digit information as cipher. After transmitting cipher to receiver, `the information can be decrypt to obtain secret data. Although hackers do not have key to decrypted data, he/she can intercept or destroy data, making that receiver cannot obtain correct information.
In order to solve this problem, many scholars proposed the concepts of data hiding. In this paper, a difference encode method is proposed to embed more secret data, where the secret data is large. The proposed method used local and global characteristic to transform most secret data into the smaller values. On contrary, a few secret data are converted into the larger values. Since embedding the smaller value does not invoke serious image distortion, the proposed method has better image quality than the previous method with the same embedding ratio.
Keyword: Data hiding, Absolute moment block truncation coding, PSNR, difference expansion
關鍵字(中) ★ AMBTC
★ 資訊隱藏
★ 動能絕對值區塊截短碼
★ PSNR值
★ 差異擴張法
關鍵字(英) ★ AMBTC
★ Data hiding
★ Absolute moment block truncation coding
★ PSNR
★ difference expansion
論文目次 目錄
第1章 序論 1
1.1 簡介 1
1.2章節架構 3
第2章 傳統數據隱藏及AMBTC資訊隱藏 4
2.1 動能絕對值區塊截短碼(AMBTC) 5
2.2 Malik等學者AMBTC資訊隱藏技術 8
2.2.1 Malik等學者架構及藏入過程 8
2.2.2 Malik等學者機密資訊解碼 10
2.3 Ou和Sun AMBTC資訊隱藏技術 12
2.3.1 Ou和Sun機密資訊解碼 14
2.4 Huang等學者機密資訊藏入及資訊解碼 15
2.5 Yeh等學者AMBTC機密資訊藏入 19
2.5.1 計算Entropy及選擇編碼簿 19
2.5.2 Yeh等學者機密嵌入方法 22
2.5.3 Yeh等學者機密資訊解碼方法 24
第3章 運用差值編碼將機密資訊藏入影像 26
3.1 演算法流程 26
3.2 機密資訊藏入方法 28
3.3 上溢(overflow)、下溢(underflow) 30
3.4 機密資訊解碼流程 31
3.5 機密資訊解碼方法 32
3.6 機密資訊藏入分段影像法 33
第4章 影像模擬與結果分析 35
4.1 灰階測試影像 35
4.1.1 AMBTC壓縮影像畫質 36
4.1.2 用於藏入偽裝影像機密資訊藏入圖 37
4.1.3 改變區塊及各方法比較表 38
4.1.4 曲線圖比較 42
4.1.5 差異圖比較 53
4.2 最大藏量及 區塊驗證 58
4.3 機密資訊藏入分段影像法模擬結果 63
4.4 實驗數據 66
第5章 結論 67
參考文獻 68


圖目錄
圖2.1:傳統資訊隱藏 4
圖2.2: AMBTC資訊隱藏 4
圖2.3:原始影像取其中一塊 原始區塊 7
圖2.4:原始區塊經AMBTC壓縮流程 7
圖2.5: Malik等學者機密藏入範例 9
圖2.6: Ou和Sun 資訊隱藏 12
圖2.7:Huang等學者機密嵌入流程圖 16
圖2.8: Huang等學者嵌入範例 17
圖2.9: Yeh等學者方法流程圖 19
圖2.10:機密資訊藏入過程 23
圖2.11: Yeh等學者機密資訊解碼流程 25
圖3.1:所提方法之機密編碼與嵌入流程圖 26
圖3.2:2轉10進制 28
圖3.3:差值相減 28
圖3.4:機密資訊轉換規則 29
圖3.5:機密資訊藏入 29
圖3.6:無法嵌入示例 30
圖3.7:所提方法之機密解碼流程圖 31
圖3.8:機密資訊提取 32
圖3.9:機密資訊藏入分段影像流程圖 33
圖3.10: Lena機密資訊藏入分段影像模擬圖 34
圖4.1: 8張灰階測試影像 35
圖4.2: AMBTC影像品質 36
圖4.3: 機密資訊 37
圖4.4: 本篇Airplane 區塊比較 42
圖4.5: 各方法Airplane 區塊比較 42
圖4.6: 各方法Airplane 區塊比較 43
圖4.7: 各方法Airplane 區塊比較 43
圖4.8: 各方法Airplane 區塊比較 43
圖4.9: 本篇Boat 區塊比較 44
圖4.10: 各方法Boat 區塊比較 44
圖4.11: 各方法Boat 區塊比較 44
圖4.12: 各方法Boat 區塊比較 44
圖4.13: 各方法Boat 區塊比較 45
圖4.14: 本篇Lena 區塊比較 45
圖4.15: 各方法Lena 區塊比較 45
圖4.16: 各方法Lena 區塊比較 45
圖4.17: 各方法Lena 區塊比較 46
圖4.18: 各方法Lena 區塊比較 46
圖4.19: 本篇Mandrill 區塊比較 46
圖4.20: 各方法Mandrill 區塊比較 46
圖4.21: 各方法Mandrill 區塊比較 47
圖4.22: 各方法Mandrill 區塊比較 47
圖4.23: 各方法Mandrill 區塊比較 47
圖4.24: 本篇Peppers 區塊比較 47
圖4.25: 各方法Peppers 區塊比較 48
圖4.26: 各方法Peppers 區塊比較 48
圖4.27: 各方法Peppers 區塊比較 48
圖4.28: 各方法Peppers 區塊比較 48
圖4.29: 本篇Sailboat 區塊比較 49
圖4.30: 各方法Sailboat 區塊比較 49
圖4.31: 各方法Sailboat 區塊比較 49
圖4.32: 各方法Sailboat 區塊比較 49
圖4.33: 各方法Sailboat 區塊比較 50
圖4.34: 本篇X-ray bones 區塊比較 50
圖4.35: 各方法X-ray bones 區塊比較 50
圖4.36: 各方法X-ray bones 區塊比較 50
圖4.37: 各方法X-ray bones 區塊比較 51
圖4.38: 各方法X-ray bones 區塊比較 51
圖4.39: 本篇Splash 區塊比較 51
圖4.40: 各方法Splash 區塊比較 51
圖4.41: 各方法Splash 區塊比較 52
圖4.42: 各方法Splash 區塊比較 52
圖4.43: 各方法Splash 區塊比較 52
圖4.44: 各方法Airplane 區塊差異圖比較 53
圖4.45: 各方法Boat 區塊差異圖比較 54
圖4.46: 各方法Lena 區塊差異圖比較 54
圖4.47: 各方法Mandrill 區塊差異圖比較 55
圖4.48: 各方法Peppers 區塊差異圖比較 55
圖4.49: 各方法Sailboat 區塊差異圖比較 56
圖4.50: 各方法X-ray bones 區塊差異圖比較 56
圖4.51: 各方法Splash 區塊差異圖比較 57
圖4.52:各方法Airplane 區塊比較 59
圖4.53:各方法Boat 區塊比較 59
圖4.54:各方法Lena 區塊比較 59
圖4.55:各方法Mandrill 區塊比較 59
圖4.56:各方法Peppers 區塊比較 60
圖4.57:各方法Sailboat 區塊比較 60
圖4.58:各方法X-ray bones 區塊比較 60
圖4.59:各方法Splash 區塊比較 60
圖4.60: 平滑區塊釋例 61
圖4.61: Lena 區塊機密資訊藏入分段影像比較圖 64
圖4.62: Lena 區塊機密資訊藏入分段影像比較圖 64
圖4.63: Lena 區塊機密資訊藏入分段影像比較圖 64
圖4.64: Lena 區塊機密資訊藏入分段影像比較圖 64
圖4.65:實驗影像 66
圖4.66:本篇1338張資訊藏入統計圖 66


表目錄
表2.1: 字典的總資訊量為12.9454,熵為2.1147 20
表2.2: 字典的總資訊量為12.2313,熵為2.2273 20
表2.3: 字典的總資訊量為12.4898,熵為2.1766 21
表2.4: 字典的總資訊量為11.8957,熵為2.2527 21
表4.1: 差值編碼轉換表 37
表4.2: 各方法 區塊比較 38
表4.3: 各方法 區塊比較 39
表4.4: 各方法 區塊比較 40
表4.5: 各方法 區塊比較 40
表4.6: 各方法 區塊比較 58
表4.7: Lena機密資訊藏入分段影像各區塊統計表 63
參考文獻 參考文獻
[1] D. Coltuc and J. M. Chassery, “Very fast watermarking by reversible contrast mapping,” IEEE Signal Processing Letters, vol. 14, no. 4, pp. 255-258, 2007.
[2] C. C. Chang, T. D. Kieu, and Y. C. Chou, “Reversible data hiding scheme using two steganographic images,” Proceedings of IEEE Region 10 International Conference on Tencon, pp. 1-4, 2007.
[3] Z. Ni, Y. Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 16, no. 3, pp. 354-362, 2006.
[4] J. Tian, “Reversible data embedding using a difference expansion,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 8, pp. 890-896, 2003.
[5] D. M. Thodi and J. J. Rodriguez, “Prediction-error based reversible watermarking,” Proceedings of IEEE Conference on Image Processing, vol. 3, pp. 1549-1552, 2004.
[6] Y. Liu, L. Ju, M. Hu, X. Ma, and H. Zhao, “A robust reversible data hiding scheme for H.264 without distortion drift,” Neurocomputing, vol. 151, no. 3, pp. 1053-1062, 2015.
[7] D. Xu, R. Wang, and Y. Q. Shi, “An improved reversible data hiding-based approach for intra-frame error concealment in H.264/AVC,” Journal of Visual Communication and Image Representation, vol. 25, no. 2, pp. 410-422, 2014.
[8] H. L. Yeh, S. T. Gue, P. Tsai, and W. K. Shih, “Reversible video data hiding using neighbouring similarity,” IET Signal Processing, vol. 8, no. 6, pp. 579-587, 2014.
[9] A. Nishimura, “Reversible audio data hiding using linear prediction and error expansion,” Proceedings of the Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 318-321, 2011.
[10] H. J. Shiu, S. Y. Tang, C. H. Huang, R. C. T. Lee, and C. L. Lei, “A reversible acoustic data hiding method based on analog modulation,” Information Sciences, vol. 273, pp. 233-246, 2014.
[11] D. Yan and R. Wang, “Reversible data hiding for audio based on prediction error expansion,” Proceedings of the Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 249-252, 2008.
[12] C. C. Chang, T. C. Lu, Y. F. Chang, and R. C. T. Lee, “Reversible data hiding schemes for deoxyribonucleic acid (DNA) medium,” International Journal of Innovative Computing, Information and Control, vol. 3, no. 5, pp. 1145-1160, 2007.
[13] H. J. Shiu, K. L. Ng, J. F. Fang, R. C. T. Lee, and C. H. Huang, “Data hiding methods based upon DNA sequences,” Information Sciences, vol. 180, no. 11, pp. 2196-2208, 2010.
[14] C. C. Chang, T. S. Nguyen, and C. C. Lin, “A reversible data hiding scheme for VQ indices using locally adaptive coding,” Journal of Visual Communication and Image Representation, vol. 22, no. 7, pp. 664-672, 2011.
[15] C. C. Chang, T. S. Nguyen, and C. C. Lin, “A novel VQ-based reversible data hiding scheme by using hybrid encoding strategies,” Journal of Systems and Software, vol. 86, no. 2, pp. 389-402, 2013.
[16] Z. Pan, S. Hu, X. Ma, and L. Wang, “A new lossless data hiding method based on joint neighboring coding,” Journal of Visual Communication and Image Representation, vol. 26, pp. 14-23, 2015.
[17] C. Qin, C. C. Chang, G. Horng, Y. H. Huang, and Y. C. Chen, “Reversible data embedding for vector quantization compressed images using search-order coding and index parity matching,” Security and Communication Networks, vol. 8, no. 6, pp. 899-906, 2014.
[18] W. J. Wang, C. T. Huang, C. M. Liu, P. C. Su, and S. J. Wang, “Data embedding for vector quantization image processing on the basis of adjoining state-codebook mapping,” Information Sciences, vol. 246, no. 10, pp. 69-82, 2013.
[19] S. Li, K. Leung, L. M. Cheng, and C. K. Chan, “A novel image-hiding scheme based on block difference,” Pattern Recognition, vol. 39, no. 6, pp. 1168–1176, 2006.
[20] C. C. Lin, W. L. Tai, and C. C. Chang, “Multilevel reversible data hiding based on histogram modification of difference images,” Pattern Recognitation, vol. 41, no.12, pp. 3582–3591, 2008.
[21] J. Mielikainen, “LSB Matching Revisited. IEEE Signal Process,” Lett , vol. 13, pp. 285–287, 2006.
[22] X. Zhang, S. Wang, “Effcient Steganographic Embedding by Exploiting Modification Direction,” IEEE Commun. Lett, vol. 10, pp.781–783, 2006.
[23] W. Hong, T. Chen, “A Novel Data Embedding Method Using Adaptive Pixel Pair Matching,” IEEE Trans. Inf. Forensics Secur, vol. 7, pp. 176–184, 2012.
[24] J. Tian, “Reversible Data Embedding Using a Difference Expansion,” IEEE Trans. Circuits Syst. Video Technol, vol. 13, pp. 890–896, 2003.
[25] F. Peng, X. Li, B. Yang, “Adaptive Reversible Data Hiding Scheme Based on Integer Transform,” Signal Process, vol. 92, pp. 54–62, 2012.
[26] W. L. Tai, C. M. Yeh, C. C. Chang, “Reversible Data Hiding Based on Histogram Modification of Pixel Di_erences,” IEEE Trans. Circuits Syst. Video Technol, vol. 19, pp. 906–910, 2009.
[27] K. Wang, Z. M. Lu, Y. J. Hu, “A High Capacity Lossless Data Hiding Scheme for JPEG Images,” J. Syst. Softw, vol. 86, pp. 1965–1975, 2013.
[28] Y. P. Lee, J. C. Lee, W. K. Chen, K. C. Chang, I. J. Su, C. P. Chang, “High-Payload Image Hiding with Quality Recovery Using Tri-Way Pixel-Value Differencing,” Inf. Sci. (Ny), vol. 191, pp. 214–225, 2012.
[29] E. Delp, O. Mitchell, “Image Compression Using Block Truncation Coding,” IEEE Trans. Commun, vol. 27, pp. 1335–1342, 1979.
[30] M. Lema, O. Mitchell, “Absolute Moment Block Truncation Coding and Its Application to Color Images,” IEEE Trans. Commun, vol. 32, pp. 1148–1157, 1984.
[31] A. Malik, G. Sikka, H. K. Verma, “A High Payload Data Hiding Scheme Based on Modified AMBTC Technique,” Multimed. Tools Appl, vol. 76, pp. 14151–14167, 2017.
[32] A. Malik, G. Sikka, H. K. Verma, “An AMBTC Compression Based Data Hiding Scheme Using Pixel Value Adjusting Strategy,” Multidimens. Syst. Signal Process, vol. 29, pp. 1801–1818, 2018.
[33] D. Ou, W. Sun, “High Payload Image Steganography with Minimum Distortion Based on Absolute Moment Block Truncation Coding,” Multimed. Tools Appl, vol. 74, pp. 9117–9139, 2015.
[34] W. Hong, T. S. Chen, C. W. Shiu, “Lossless steganography for AMBTC-compressed images,” In: International Congress on Image and Signal Processing, vol. 2, pp. 13–17, 2008.
[35] Y. H. Huang, C. C. Chang, Y. H. Chen, “Hybrid secret hiding schemes based on absolute moment block truncation coding, ” Multimedia Tools and Applications, vol.76, pp. 6159-6174, 2016.
[36] J. Y. Yeh, C. C. Chen, P. L. Liu, and Y. H. Huang, “High-Payload Data-Hiding Method for AMBTC Decompressed Images,” Entropy, vol. 22-2, no. 145, pp. 1-13, 2020.
[37] T. C. Lu, L. P. Chi, C. H. Wu, and H. P. Chang, “Reversible data hiding in dual stego-images using frequency-based encoding strategy,” Multimedia Tools and Applications, vol.76, pp. 23903-23929, 2017.
[38] UCID Image Dataset, http://homepages.lboro.ac.uk/~cogs/datasets/ucid/data/ ucid.v2.tar.gz
指導教授 張大中(Dah-Chung Chang) 審核日期 2021-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明