參考文獻 |
[1] D. G. Brennan, “Linear diversity combining techniques,” Proc. IRE, pp. vol. 47, pp. 1075–1102, June 1959.
[2] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-m fading environment,” IEEE Trans. Commun, pp. vol. 43, pp. 2360–2367, Aug 1995.
[3] B. Zhu, F. Yang, J. Cheng, and L. Wu, “Performance bounds for diversity receptions over arbitrarily correlated Nakagami-m fading channels,” IEEE Trans. Wireless Commun, p. pp. 699–713, Jan 2016.
[4] Physical Channels and Modulation (Release 8), "Technical Specification Group Radio Access Network; Evolved University Terrestrial Radio Access (E-UTRA)," 3GPP Std. TS 36.211 V8.3.0, 2005.
[5] C. D. Iskander and P. T. Mathiopoulos, “Analytical level crossing ratesand average fade durations for diversity techniques in Nakagami fading channels,” IEEE Trans. Commun, pp. vol. 50, pp. 1301–1309, Aug 2002.
[6] C. Polprasert and J. A. Ritcey, “A Nakagami fading phase difference distribution and its impact on BER performance,” IEEE Trans. Wireless Commun, pp. vol. 7, pp. 2805–2813, July 2008.
[7] R. H. Clarke, “A statistical theory of mobile radio reception,” Bell System Tech. J, p. pp. 957–1000, July/August 1968.
[8] D. B. da Costa, M. D. Yacoub, J. C. S. S. Filho, and G. Fraidenraich, “General exact level crossing rate and average fade duration for dualdiversity combining of nonidentical correlated Weibull signals,” IEEE Trans. Veh. Technol, pp. vol. 56, pp. 3571–3577, Nov 2007.
[9] D. Li and V. K. Prabhu, “Average level crossing rates and average fade durations for maximal-ratio combining in correlated Nakagami channels,” in Proc. IEEE Wirel. Commun. and Network. Conf., p. pp. 339–344, March 2004.
[10] D. Luengo and L. Martino, “Almost rejectionless sampling from Nakagami-m distributions (m ≥ 1),” IET Electron. Lett, pp. vol. 48, pp.1559–1561, Nov 2012.
[11] L. Devroye, “Non-Uniform Random Variate Generation,” New York:Springer-Verlog, 1986.
[12] F. Adachi, M. T. Feeney, and J. D. Parsons, “Effects of correlated fading on level crossing rates and average fade durations with predetection diversity reception,” IEE Proceedings, pp. vol. 135, pp. 11–17, Feb 1988.
[13] G. Fraidenraich, M. D. Yacoub, J. R. Mendes, and J. C. S. S. Filho, “Second-order statistics for diversity-combining of non-identical correlated Hoyt signals,” IEEE Trans. Commun, pp. vol. 56, pp. 183–188, Feb 2008.
[14] J. C. S. S. Filho and M. D. Yacoub, “On the simulation and correlation properties of phase-envelope Nakagami fading processes,” IEEE Trans.Commun., pp. vol. 57, pp. 906–909, Apr 2009.
[15] J. C. S. S. Filho, G. Fraidenraich, and M. D. Yacoub, “Exact crossing rates of dual diversity over unbalanced correlated Rayleigh channels,” IEEE Commun. Lett, pp. vol. 10, pp. 37–39, Jan 2006.
[16] K. Zhang, Z. Song, and Y. L. Guan, “Cholesky decomposition model for correlated MRC diversity systems in Nakagami fading channels,” in Proc. IEEE Vehic. Technol. Conf., pp. pp. 1515-1519, 2002.
[17] P. Loskot and N. Beaulieu, “Decorrelation and orthogonalization of correlated diversity branches for HS/MRC diversity,” in Proc. IEEE Vehic. Technol. Conf. 2008, (VTC 2008-Spring), p. pp. 335–339, 2008.
[18] M. S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Veh. Technol, pp. vol. 50, pp. 1471–1480, Nov 2001.
[19] J. C. S. S. Filho, B. V. Teixeira, M. D. Yacoub, and G. T. F. de Abreu, “The RM2 Nakagami fading channel simulator,” IEEE Trans. Wireless Commun., pp. vol. 12, pp. 2323–2333, May 2013.
[20] X. Dong and N. C. Beaulieu, “Average level crossing rate and average fade duration of low-order maximal ratio diversity with unbalanced channels,” IEEE Commun. Lett., pp. vol. 6, pp. 135–137, Apr 2002.
[21] ——, “Average level crossing rate and average fade duration of selection diversity,” IEEE Commun. Lett, pp. vol. 5, pp. 396–398, Oct 2001.
[22] M. D. Yacoub, “Nakagami-m phase-envelope joint distribution:An improved model,” n Proc. IEEE MTT-S Intern. Microw. Optoelec. Conf.(IMOC 2009), p. pp. 335–339, 2009.
[23] Q. T. Zhang, “Maximal-ratio combining over Nakagami fading channels with an arbitrary branch covariance matrix,” IEEE Trans. Veh. Technol, pp. vol. 48, pp. 1141–1150, July 1999.
[24] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes, “On higher order,” IEEE Trans. Veh. Technol, pp. vol. 48, pp. 2360–2369, May 1999.
[25] M. D. Yacoub, C. R. C. M. da Silva, and J. E. V. Bautista, “Second-order statistics for diversity-combining techniques in Nakagami-fading,” IEEE Trans. Veh. Technol., pp. vol. 50, pp. 1464–1470, Nov 2001.
[26] Y. Ma and J. Jin, “Effect of channel estimation errors on M-QAM with MRC and EGC in Nakagami fading channels,” IEEE Trans. Veh.Technol., pp. vol. 56, pp. 1239–1249, May 2007.
[27] J.-C. Lin, “An approach to the second-order statistics of maximum-ratio combining-like reception over independent Nakagami channels,” IEEE Trans. Veh. Technol, pp. vol. 61, pp. 859–865, Feb 2012.
[28] X. Dong and N. C. Beaulieu, “Optimal maximal ratio combining with correlated diversity branches,” IEEE Commun. Lett, pp. vol. 6, pp. 22–24, Jan 2002.
[29] M. D. Yacoub, G. Fraidenraich, and J. C. S. S. Filho, “Nakagami-m phase-envelope joint distribution,” Electr. Lett, pp. vol. 41, pp. 259–261, May 2005.
[30] ——, “Nakagami-m phase-envelope joint distribution: A new model,” IEEE Trans. Veh. Technol, pp. vol. 59, pp. 1552–1557, Mar 2010.
[31] L. Cao and N. C. Beaulieu, “Simple efficient methods for generating independent and bivariate Nakagami-m fading envelope samples,” IEEE Trans. Veh. Technol, pp. vol. 56, pp. 1573–1579, Apr 2007.
[32] Q. M. Zhu, X. Y. Dang, D. Z. Xu, and X. M. Chen, “Highly efficient rejection method for generating Nakagami-m sequences,” IET Electron.Lett., pp. vol. 47, pp. 1100–1101, Sept 2011.
[33] L. Martino and D. Luengo, “Extremely efficient acceptance-rejection method for simulating uncorrelated Nakagami fading channels,” Communications in Statistics - Simulation and Computation, p. pp. 1559–1561, Feb 2018.
[34] K. Zhang, Z. Song, and Y. L. Guan, “Simulation of Nakagami fading channels with arbitrary cross-correlation and fading parameters,” IEEE Trans. Wireless Commun., pp. vol. 3, pp. 1463–1468, May 2004.
[35] N. C. Beaulieu and C. Cheng, “Efficient Nakagami-m fading channel simulation,” IEEE Trans. Veh. Technol., pp. vol. 54, pp. 413–424, 2005.
[36] M. S. Alouini, A. Scaglione, and G. B. Giannakis, “PCC: Principal components combining for dense correlated multipath fading environments,” in Proc. IEEE Vehic. Technol. Conf., 2000, (VTC 2000), p. pp. 2510–2517., 2000.
[37] L. Fan, R. Zhao, F.-K. Gong, N. Yang, and G. K. Karagiannidis, “Secure multiple amplify-and-forward relaying over correlated fading channels,” IEEE Trans. Commun, pp. vol. 65, pp. 2811–2820, July 2017.
[38] X. Lai, L. Fan, J. Li, N. Yang, and G. K. Karagiannidis, “Distributed secure switch-and-stay combining over correlated fading channels,” IEEE Trans. Inform. Forensics and Security, pp. vol. 14, pp. 2088–2101, Aug 2019.
[39] J. G. Proakis and M. Salehi, “ Digital Communications. 5th ed,” McGrawHill, 2008.
[40] S. Haykin, “Communication Systems. 4th ed,” John Wiley & Sons, Inc, 2001.
[41] J.-C. Lin, “Revisit on maximum ratio combining reception practically,” in Proc. Wireless Telecommunications Symposium, (WTS 2015), p. 15–17, Apr 2015.
[42] M. Nakagami, “ The m-distribution a general formula of intensity distribution of rapid fading. Statistical Methods in Radio Wave Propagation,” W. C. Hoffman, Ed. Elmsford, NY: Pergamon,, 1960.
[43] Q. T. Zhang, “A decomposition technique for efficient generation of correlated Nakagami fading channels,” IEEE J. Select. Areas Commun., pp. vol. 18, pp. 2385–2392, Nov 2000.
[44] S. M. Kay, “Fundamentals of Statistical Signal Processing,” Estimation Theory. Prentice Hall, 1993.
[45] J.-C. Lin and H. V. Poor, “A systematic approach to deriving the covariance matrix of correlated Nakagami-m fading channels,” IEEE Trans. Veh. Technol, pp. vol. 69, pp. 1612–1625, Feb 2020.
[46] C. W. Therrien, “Discrete Random Signals and Statistical Signal Processing,” Prentice-Hall, Inc., pp. vol. 35, pp. 227–283, 1964, 1992.
[47] W. C. Jakes, “Microwave Mobile Communications. New York: Wiley”. |