姓名 |
張兆凱(Chao-Kai Chang)
查詢紙本館藏 |
畢業系所 |
照明與顯示科技研究所 |
論文名稱 |
可重構SU-8之波導製程與量測研究 (The study of the fabrication and measurement of reconfigurable SU-8 waveguide)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
|
摘要(中) |
本論文利用負型光阻SU-8做成一個光波導的微環形諧振器,由於諧振器能過濾特定波長的光波,因此可以透過使用多個微環形諧振器製造出高階數的光學濾波器,光學諧振器有小尺寸、低損耗、可整合光學系統的優點。除此之外,由於可以透過改變共振腔大小來改變共振波長,整個諧振器可以視為一個可調變的系統,這個特性可以用來製作某些力學、生物及化學感應器。本論文主要討論由SU8所製作之波導及其製程優化。研究的目的有三個,第一是以SU-8製程光波導的微環形諧振器測量本身波導的損耗與品質因子(quality factor, Q),第二是當作其他材料製程光波導的微環形諧振器的擷取端(drop port)測量其損耗與品質因子。第三是SU-8波導可以設計為晶載的干涉儀,而可量測的範圍則受限於SU-8波導的色散。文中探討包括製程優化、光學量測、環形諧振器設計以及未來研究規劃,其中SU-8分別使用了SU-8 2000.5與SU-8 GM1040兩種不同的光阻來比較。本篇論文的模擬分析會在第二章製程當中討論,主要是探討不同厚度的SU-8與不同厚度的埋入氧化層對雷射通過波導後所產生的損耗,以及不同寬度的SU-8波導對能量的損耗,在單模的情況下,觀察其耦合的強弱。製程方面所使用的光刻技術為紫外光光刻技術(UV optical lithography),不使用電子束(E-beam)的原因為其耗時過長,往往無法加快所需的產能與產量。光阻的選擇使用了SU-8 2000.5與SU-8 GM1040這兩種,由於兩者光阻型號不同,因此旋轉塗佈後能疊出的厚度也受到限制而會有所不同。曝光是以接觸式曝光(contact exposure)的方式,透過改變曝光時間,觀察光罩上波導寬度、間距與顯影後波導寬度、間距的差異,因為曝光存在著繞射效應的問題,因此本研究使用寬度尺寸為5μm的波導。量測的部分則是根據製程後的結果,探討雷射光耦合進入波導內的損耗以及產生穿透諧振。在橫向電場模態(Transverse Electric mode, TE mode)的情況下耦合進入微環形諧振器,主要探討的是100μm的環形半徑,所製造出來的微環形諧振器具有~2.24nm的自由光譜範圍(Free Spectral Range , FSR),約為280 GHz。可以得到結論當SU-8的厚度越厚,光的損耗會越小;埋入氧化層的厚度越厚,也會使光的損耗越小。除此之外,透過光耦合進入波導並在不同的波長下量測,發現經過穿透端(through port)的波形有規律振盪,則可以得知該光波導具有諧振。在未來研究上,由於過去的研究中有擷取端設計之微環形諧振器,一般而言在腔內外累積之雷射能量可藉由耦合進入擷取端以量測諧振器行為,然而此方法會對諧振器內產生較多的損耗,因而造成較低的品質因子。因此本研究提供了利用後段製程的方式做出低損耗、可後製的SU-8光波導之可行性,這種可後製的SU-8光波導可以利用後段曝光製程,在量測完任意材料的微環形諧振器的品質因子後,再利用光阻去除的方式將SU-8光波導移除,同時達到量測諧振器內參數以及降低在偵測端對微環形諧振器之損耗。 |
摘要(英) |
This thesis discusses the measurement and fabrication process utilizing the negative photoresist SU-8 as an optical waveguide micro-ring resonator. Since the resonator can filter light of a specific wavelength, a high-order optical filter can be manufactured by using multiple micro-ring resonators. The optical resonator has the advantages of small size, low loss, and integration of optical systems. In addition, since the resonant wavelength can be changed by changing the resonator dimension, the resonator offers tunability for integrated photonics. This feature can be also used to make mechanical, biological, and chemical sensors. By utilizing the SU8 waveguide, there are a few potentials for integrated photonics. First, it provides a reconfigurable way to measure and to optimize the fabrication process of the optical waveguides. We discuss the fabrication process, waveguide loss, and quality factor of the micro resonators, providing the general waveguide parameters for the future reconfigurable design. Second, this study helps to build a reconfigurable in-line monitor platform for on-chip micro resonator (modulator). By fabricating a reconfigurable drop port and measuring the loss and quality factor of micro-ring resonators made of other materials (E.g. Silicon / silicon nitride), the SU8 waveguide can help to minimize the loaded effect on the micro resonator by later removing the drop port after the measurement. Last, the reconfigurable SU-8 waveguide provides the potential for on-chip interferometer by designing the proper resonator radius and the corresponding free-spectral range (FSR). In the thesis, we include the fabrication optimization of SU-8 waveguide, optical measurement, and preliminary results for a reconfigurable waveguide. In the experiments, two different photoresists of SU-8 2000.5 and SU-8 GM1040 are used for comparison. These photoresists provide different coating thicknesses, which strongly affect the waveguide behavior. Also, the simulation analysis of the propagated mode-profile will be discussed in the second chapter, by comparing the loss under different thicknesses of the SU-8 and of the buried oxide layer. In experiments, we will show the optical loss of the SU8 waveguide under different waveguide dimensions. Conventional UV optical lithography is used for waveguide fabrication, which provides better through-put for mass, rapid, and economic production for future usage. We use contact exposure method for UV patterning. By changing the exposure time, we observe the difference between the waveguide width and gap on the mask and the fabricated one after development. For optical measurement, we discuss the optical coupling, loss, and transmission resonance in the transverse electric mode (TE mode). By designing ring radius 100μm a free spectral range (FSR) of ~2.24nm is obtained corresponding to 280 GHz in frequency. We identify that lower optical loss can be achieved by either increasing the thickness of SU-8, or the thickness the buried oxide layer. The transmitted light is coupled into the waveguide and the corresponding transmission spectrum is measured in C-band. Resonance with Q up to 991 can be identified while the repetition rate (or FSR) is matched with our designed resonators. In the future study, this reconfigurable waveguide can be used in replacement of the regular drop-port waveguide, in which strongly degrades the quality factor in the resonator, or can be used as on-chip interferometry for optical frequency metrology. |
關鍵字(中) |
★ 可重構 ★ SU-8 ★ 波導 ★ 製程 ★ 量測 |
關鍵字(英) |
★ reconfigurable ★ SU-8 ★ waveguide ★ fabrication ★ measurement |
論文目次 |
目錄
摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 研究方向 4
第二章 SU-8光波導製程 8
2-1製程設備 8
2-1.1 製程介紹 8
2-1.2 機台介紹 8
2-1.3 光罩設計 14
2-2製程步驟 22
2-2.1 乾氧氧化與濕氧氧化 23
2-2.2 清洗晶片步驟 24
2-2.3 負型光阻SU-8 2000.5 25
2-2.4 負型光阻SU-8 GM1040 28
2-3 負型光阻SU-8厚度、埋入氧化層厚度與光強度的探討 30
2-3.1 負型光阻SU-8厚度、埋入氧化層厚度對光強度的影響 30
2-3.2 雙重塗佈負型光阻SU-8之厚度的變因 34
2-4 曝光時間的改變對線波導寬度的影響 35
2-4.1 使用光罩2調整曝光時間 35
2-4.2 光罩1與光罩2的設計對線波導寬度的影響 36
第三章 通訊光穿透量測 39
3-1 微環形諧振(micro-ring resonance , MRR)原理 39
3-2 量測設備與架構圖 42
3-3 通訊光穿透量測步驟 45
3-4 通訊光穿透量測與品質因子的結果 45
3-4.1 SU-8波導的發散角 45
3-4.2 光波導損耗推論 49
3-4.3 量測結果 50
第四章 後段製程微環形諧振器的擷取端設計及未來研究方向與結論 56
4-1 前言 56
4-2 SU-8波導的擷取端設計理念 56
4-3 可重構的SU-8波導製程步驟 57
4-3.1 矽晶圓上濕氧氧化沉積與清洗 58
4-3.2 前段製程(氮化矽環形波導) 58
4-3.3 後段製程(SU-8長傳輸波導) 60
4-4 結論 62
參考文獻 64 |
參考文獻 |
參考文獻
[1] https://zh.wikipedia.org/wiki/%E5%85%89%E7%BA%96%E9%80%9A%E8%A8%8A ,”光纖通訊”
[2] https://zh.wikipedia.org/wiki/%E7%84%A1%E7%B7%9A%E9%80%9A%E8%A8%8A#%E9%9B%BB%E7%A3%81%E6%B3%A2%E9%A0%BB%E8%AD%9C ,”電磁波通訊”
[3] https://blog.csdn.net/m_052148/article/details/51322260 ,”通訊頻寬”
[4] https://zh.wikipedia.org/wiki/%E7%A0%B7%E5%8C%96%E9%8E%B5 “砷化鎵特性”
[5] https://zh.wikipedia.org/wiki/%E5%85%89%E7%94%B5%E6%95%88%E5%BA%94 ,”光電效應”
[6] Armenise, M. N. "Fabrication techniques of lithium niobate waveguides." IEE Proceedings J (Optoelectronics) 135.2 (1988): 85-91.
[7] https://highscope.ch.ntu.edu.tw/wordpress/?p=74501 ,”矽的能隙”
[8] https://zh.wikipedia.org/wiki/%E5%85%89%E5%AD%B8%E7%92%B0%E5%BD%A2%E8%AB%A7%E6%8C%AF%E5%99%A8 ,”光學環形諧振器”
[9] https://kayakuam.com/wp-content/uploads/2019/09/SU-82000DataSheet2000_5thru2015Ver4-2.pdf ,”負型光阻SU-8 2000.5規格”
[10] http://www.jja.com.tw/product_description.php?PNo=76 ,”負型光阻SU-8 GM1040規格”
[11] https://zh.wikipedia.org/wiki/%E5%85%A8%E5%85%A7%E5%8F%8D%E5%B0%84 ,”全內反射”
[12] Dai, Daoxin, et al. "Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides." IEEE photonics technology letters 21.4 (2009): 254-256.
[13] Girault, Pauline, et al. "Micro-resonators based on integrated polymer technology for optical sensing." Optical Sensing and Detection III. Vol. 9141. International Society for Optics and Photonics, 2014.
[14] Horvath, Cameron, et al. "Polymer hybrid plasmonic waveguides and microring resonators." IEEE Photonics Technology Letters 23.17 (2011): 1267-1269.
[15] https://zh.wikipedia.org/wiki/%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6%B2%89%E7%A7%AF ,”化學氣相沉積”
[16] https://zh.wikipedia.org/wiki/%E8%9D%95%E5%88%BB ,”蝕刻”
[17] https://zh.wikipedia.org/wiki/%E5%85%89%E5%88%BB ,”光刻”
[18] https://nanofc.web.nctu.edu.tw/%e6%b0%a7%e5%8c%96%e6%93%b4%e6%95%a3%e7%b3%bb%e7%b5%b1oxidation-diffusion-furnaces/ ,”氧化擴散系統”
[19] Gersborg-Hansen, Morten, et al. "Combined electron beam and UV lithography in SU-8." Microelectronic Engineering 84.5-8 (2007): 1058-1061.
[20] Filipovic, Lado. Topography simulation of novel processing techniques. Diss. 2012.
[21] http://www.cybernet-ap.com.tw/zh.php?m=743&t=71 ,”RSoft波動光學X電磁光學模擬套件”
[22] Chuang, Y-J., F-G. Tseng, and W-K. Lin. "Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination." Microsystem Technologies 8.4-5 (2002): 308-313.
[23] Uddin, M. Rakib, et al. "Quality analysis of a photonic micro-ring resonator." 2016 international conference on computer and communication engineering (ICCCE). IEEE, 2016.
[24] Vlasov, Yurii A., and Sharee J. McNab. "Losses in single-mode silicon-on-insulator strip waveguides and bends." Optics express 12.8 (2004): 1622-1631.
[25] Xiao, Shijun, et al. "Modeling and measurement of losses in silicon-on-insulator resonators and bends." Optics Express 15.17 (2007): 10553-10561.
[26] Son, Gyeongho, et al. "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits." Nanophotonics 7.12 (2018): 1845-1864.
[27] Germer, Susette. "Design and analysis of integrated waveguide structures and their coupling to silicon-based light emitters." (2015).
[28] Ding M., Fan D., Wang W., Luo Y., Peng GD. (2018) Basics of Optical Fiber Measurements. In: Peng GD. (eds) Handbook of Optical Fibers. Springer, Singapore. https://doi.org/10.1007/978-981-10-1477-2_57-1 |
指導教授 |
王培勳(Pei-Hsun Wang)
|
審核日期 |
2021-9-3 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|