參考文獻 |
[1] P. Lucas, Traité philosophique et physiologique de l′hérédité naturelle dans les états de santé et de maladie du système nerveux (1847).
[2] B. A. Morel, Traité des dégénérescences physiques, intellectuelles et morales de l′espèce humaine (1857).
[3] C. S. Fere, La Famille névropathique (1894).
[4] P. F. Bray, “Sex-linked neurodegenerative disease associated with monilethrix,” Pediatrics 36, 417-420 (1965).
[5] D. A. Drachman, “The neurodegenerative disorders associated with progressive external ophthalmoplegia,” Arch Neurol. 18, 654-674 (1968).
[6] S. B. Prusiner, “Neurodegenerative diseases and prions,” N. Engl. J. Med. 344, 1516-1526 (2001).
[7] M. J. Prince, A. Wimo, M. M. Guerchet, G. C. Ali, Y. Wu, amd M. Prina, “World alzheimer report 2015 - the global impact of dementia: an analysis of prevalence, incidence, cost and trends,” Int J Alzheimers Dis. (2015).
[8] A. D. Gitler, P. Dhillon, and J. Shorter, “Neurodegenerative disease: models, mechanisms, and a new hope,” Dis Model Mech. 10, 499–502 (2017).
[9] C. G. Chung, H. Lee, and S. B. Lee, “Mechanisms of protein toxicity in neurodegenerative diseases,” Cell. Mol. Life Sci. 75, 3159–3180 (2018).
[10] Nobel Prize. org, “The nobel prize in physiology or medicine 1960,” https://www.nobelprize.org/prizes/medicine/1960/summary/.
[11] Food and Drug Administration, “Namzaric (memantine hydrochloride extended-release/donepezil hydrochloride) Capsules,” https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206439Orig1s000TOC.cfm..
[12] D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs from 1981 to 2014,” J. Nat. Prod. 79, 629–661 (2016).
[13] B. Winner and J. Winkler, “Adult neurogenesis in neurodegenerative diseases,” Cold Spring Harb. Perspect. Biol. 7, (2015).
[14] M. Yu, Y. Huang, J. Ballweg, H. Shin, M. Huang, D. E. Savage, M. G. Lagally, E. W. Dent, R. H. Blick, and J. C. Williams, “Semiconductor nanomembrane tubes: three-dimensional confinement for controlled neurite outgrowth,” ACS Nano. 5, 2447–2457 (2011).
[15] N.Li, X. Zhang, Q. Song, R. Suac, Q. Zhang, T. Kong, L. Liu, G, Jin, M. Tang, and G. Cheng, “The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates,” Biomaterials 32, 9374-9382 (2011).
[16] M. Marcus, H. Skaat, N. Alon, S. Margel, and O. Shefi, “NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells,” Nanoscale 7, 1058-1066 (2015).
[17] R. Alyautdin, I. Khalin, M. I. Nafeeza, M. H. Haron, and D. Kuznetsov, “Nanoscale drug delivery systems and the blood–brain barrier,” Int. J. Nanomedicine 9, 795–811 (2014).
[18] A. Z.Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, “Nanoparticles as drug delivery systems,” Pharmacol Rep. 64, 1020-1037 (2012).
[19] K. Nekoueian, M. Amiri, M. Sillanpää, F. Marken, R. Boukherroub, and Sabine Szunerits, “Carbon-based quantum particles: an electroanalytical and biomedical perspective,” Chem. Soc. Rev. 48, 4281-4316 (2019).
[20] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[21] I. L. Medintz, H. T. Uyeda, E. R. Goldman, and Hedi Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435– 446 (2005).
[22] K. M. Tripathi, A. K. Sonker, A. Bhati, J. Bhuyan, A. Singh, A. Singh, S. Sarkar, and S. K. Sonkar, “Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA,” New J. Chem. 40, 1571-1579 (2016).
[23] A. H. Loo, Z. Sofer, D. Bouša, P. Ulbrich, A. Bonanni, and M. Pumera, “Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection,” ACS Appl. Mater. Interfaces, 8, 1951-1957 (2016).
[24] Physical Measurement Laboratory of NIST, “Bohr radius,” https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0.
[25] S. Zhua, L. Wang, B. Li, Y. Song, X. Zhao, G. Zhang, S. Zhang, S. Lu, J. Zhang, H. Wang, H. Sun, and B. Yang, “Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots,” Carbon 77, 462-472 (2014).
[26] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, and S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6, 5102-5110 (2012).
[27] L. Bao, Z. Zhang, Z. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, and D. Pang, “Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism,” Adv. Mater. 23, 5801-5806 (2011).
[28] H. Ding, S. Yu, J. Wei, and H. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano, 10, 484-491 (2016).
[29] N. Arora and N.N.Sharma, “Arc discharge synthesis of carbon nanotubes: Comprehensive review,” Diam Relat Mater. 50, 135-150 (2014).
[30] D. Reyes, M. Camacho, M. Camacho, M. Mayorga, D. Weathers, G. Salamo, Z. Wang, amd A. Neogi, “Laser ablated carbon nanodots for light emission,” Nanoscale Res. Lett. 11, 424 (2016).
[31] J. Zhou, C. Booker, R. Li, X. Zhou, T. Sham, X. Sun, and Z. Ding, “An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs),” J. Am. Chem. Soc. 129, 744-746 (2007).
[32] Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, and C. M. Li, “One-step and high yield simultaneous preparation of single- and multi-layer graphenequantum dots from CX-72 carbon black,” J. Mater. Chem. 22, 8764-8766 (2012).
[33] H. He, X. Liu, S. Li, X. Wang, Q. Wang, J. Li, J. Wang, H. Ren, B. Ge, S. Wang, X. Zhang, and F. Huang, “High-density super-resolution localization imaging with blinking carbon dots,” Anal. Chem. 89, 11831–11838 (2017).
[34] Z. C. Yang, M. Wang, A. M. Yong, S. Y. Wong, X. H. Zhang, H. Tan, A. Y. Chang, X. Li, and J. Wang, “Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate,” Chem. Commun. 47, 11615-11617 (2011).
[35] Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. 48, 380-382 (2012).
[36] V. Sharma, P. Tiwari, and S. M. Mobin, “Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging,” J. Mater. Chem. 5, 8904-8924 (2017).
[37] P. Chen, Y. Chen, P. Hsu, C. Shiha, and H. Chang, “Photoluminescent organosilane-functionalized carbon dots as temperature probes,” Chem. Commun. 49, 1639-1641 (2013).
[38] K. M. Tripathi, A. Tyagi, M. Ashfaqa, and R. G. Gupta, “Temperature dependent, shape variant synthesis of photoluminescent and biocompatible carbon nanostructures from almond husk for applications in dye removal,” RSC Adv. 6, 29545-29553 (2016).
[39] M. Xue, J. Zhao, Z. Zhan, S. Zhao, C. Lan, F. Ye, and Hong Liang, “Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy,” Nanoscale 10, 18124-18130 (2018).
[40] Y. Liu, N.Xiao, N. Gong, H. Wang, X. Shi, W. Gu, amd L.Ye, “One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes,” Carbon 68, 258-264 (2014).
[41] K. Jiang, Y. Wang, X. Gao, C. Cai, and H. Lin. “Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation,” Angew. Chem. Int. Ed 57, 6216-6220 (2018).
[42] M. L. Mignogna and P. D′Adamo, “Critical importance of RAB proteins for synaptic function,” Small GTPases. 9, 145–157 (2018).
[43] S. D. Giovanni, A. D. Biase, A. Yakovlev, T. Finn, J. Beers, E. P. Hoffman, and A. I. Faden, “In Vivo and in Vitro Characterization of Novel Neuronal Plasticity Factors Identified following Spinal Cord Injury,” J. Biol. Chem. 280, 2084-2091 (2005).
[44] J. R. Junutula, A. M. D.Maziére, A. A. Peden, K. E. Ervin, R. J. Advani, S. M. v. Dijk, J. Klumperman, and R. H. Scheller, “Rab14 is involved in membrane trafficking between the golgi complex and endosomes,” Mol. Biol. Cell 15, 2049-2522 (2004).
[45] P. Lall, A. J. Lindsay, S. Hanscom, T. Kecman, E. S. Taglauer, U. M. McVeigh,E. Franklin, M. W. McCaffrey, and A. R. Khan, “Structure-Function Analyses of the Interactions between Rab11 and Rab14 Small GTPases with Their Shared Effector Rab Coupling Protein (RCP),” J Biol Chem. 290, 18817–18832 (2015).
[46] C. N. Lunardi, A. J. Gomes, F. S. Rocha, J. D. Tommaso, and G. S. Patience, “Experimental methods in chemical engineering:Zeta potential,” Can J Chem Eng 99, 627-639 (2020).
[47] Malvern Panalytical Ltd, “Zetasizer Nano ZS90,” https://www.malvernpanalytical.com/en/support/product-support/zetasizer-range/zetasizer-nano-range/zetasizer-nano-zs90.
[48] JEOL Ltd., “JEM-2100 Electron Microscope,” https://www.jeol.co.jp/en/products/detail/JEM-2100.html.
[49] HORIBA, “FluoroMax,” https://www.horiba.com/en_en/products/detail/action/show/Product/fluoromax-1576/.
[50] JASCO, “FT/IR-4000 Series of FTIR Spectrometers,” https://jascoinc.com/products/spectroscopy/ftir-spectrometers/models/ftir-4000-series/.
[51] Major science, “Mini Horizontal Gel Electrophoresis System, MJ-105A,” https://www.majorsci.com/product-Mini-Horizontal-Gel-Electrophoresis-System,-MJ-105A-MJ-105A.html.
[52] Molecular Devices, “Multi-Mode Microplate Readers,” https://www.moleculardevices.com/products/microplate-readers/multi-mode-readers.
[53] ZEISS, “ZEISS Axio Observer for Life Science Research,” https://www.zeiss.com/microscopy/int/products/light-microscopes/axio-observer-for-biology.html.
[54] L. Shi, Y. Li, X. Li, X. Wen, G. Zhang, J. Yang, C. Donga, and S. Shuang, “Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining,” Nanoscale 7, 7394-7401 (2015).
[55] N. B. Colthup, Spectra-Structure Correlations in the Infra-Red Region (1950).
[56] T. Ebata, T. Watanabe, and N. Mikami, “Evidence for the Cyclic Form of Phenol Trimer: Vibrational Spectroscopy of the OH Stretching Vibrations of Jet-Cooled Phenol Dimer and Trimer,” J. Phys. Chem. 99, 5761-5764 (1995).
[57] R. M. D. Soares, A. M. F. Lima, R. V. B. Oliveira, A. T. N. Pires, and V. Soldi, “Thermal degradation of biodegradable edible films based on xanthan and starches from different sources,” Polym. Degrad. Stab. 90, 449-454 (2005).
[58] P. Zielinski and I. G. D. Lana, “An FTIR spectroscopic view of the initiation of ethylene polymerization on Cr/SiO2 catalyst,” J. Catal. 137, 368-376 (1992).
[59] ACE Biolabs, “Cell culture,” https://www.acebiolab.com/EN/news/43.
[60] H. Hatakeyama, H. Akita, and H. Harashima, “A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma,” Adv. Drug Deliv. Rev. 63, 152-160 (2011). |