博碩士論文 108232003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:149 、訪客IP:18.221.146.223
姓名 黃詠勤(Yung-Chin Haung)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 多功能性碳奈米載體於增進神經元突觸增長之研究
(The enhancement of neurite outgrowth by using multi-functionalized carbon nano-carrier)
相關論文
★ 時域聚焦多光子激發定位影像的波前修正之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著全球人口的老年化,可以預期神經退化性疾病將會影響未來全球的家庭、社會、醫療甚至經濟層面。根據臨床數據顯示神經退化性疾病有許多病徵表現包括神經元減少、突觸數量降低與失能、氧化應激增加和粒線體功能障礙等,因此開發多功能療法是治療神經退化性疾病的重要課題。在本論文中,提出一種嶄新的治療採用神經退化性疾病的方式。利用硝酸蝕刻 (Acid Etching) 製備出具有良好生物相容性且有著迷人的光致發光效應的奈米碳粒子作為載體。再透過修飾不同官能基,改變其螢光光譜,並於提高細胞吞噬率後可作為生物成像的奈米探針。實驗結果顯示,引入PEI官能基作為表面電位的修飾 (CD+PEI) 後,其吞噬率高達99.35%且具備低生物毒性,並能成功載入質體DNA (plasmid DNA;pDNA),解決pDNA難以進入細胞的限制,大幅提升細胞攝入pDNA之效率,促使神經元突觸增生 (神經元突觸長度大於其兩倍本體尺度之數量達總數50%以上)。另外,可作為攜帶天然的藥物白藜蘆醇的平台,能降低活性氧自由基) 達到減少神經元的損傷之目的。基於奈米碳粒子作為載體結合pDNA和藥物,可提供一種具有多重功能的神經元增生突觸之方式,因此我們認為奈米碳粒子在神經退化性疾病的應用上具有相當大的潛力。
摘要(英) Because of the population ageing in many countries, it can be expected that neurodegenerative diseases will produce many influences for the families, healthcare, society, and even economy aspects in the world. In the clinical data, the neurodegenerative diseases have presented a lot of symptoms, such as the neuronal loss, synaptic dysfunction and loss, oxidative stress increase, mitochondrial dysfunction, and etc. Consequently, developing multifunctional therapies to treat the neurodegenerative diseases is a curial subject. In this thesis, we reported a novel treatment for the neurodegenerative diseases. The carbon nanodot having the good biocompatibility and fascinating photoluminescence were fabricated as a nanocarrier by using the acid etching. After the surface functionalization to alter the fluorescence spectrum and enhance the efficiency of cell uptake, the carbon dots can be used as a nanoprobe for the bioimaging applications. According to the experimental results, the carbon dots with the polyethyleneimine functionalization keep low cytotoxicity and exhibit the superior efficiency of cell uptake, which is up to 99.35%. Through this approach, the presented carbon dots can successfully carry the plasmid DNA (pDNA) into the neurons to improve the low transfection efficiency of the neurons. This great improvement in the pDNA ingesting of neurons also promote their neurite outgrowth. The neurons with the neurite length over twice size of their soma is increased more than 50 %. Furthermore, the carbon dots can also be a platform to carry the natural drug, resveratrol, which is able to reduce the reactive oxygen species to prevent the damage of neurons. The presented carbon dots as the nanocarriers of pDNA and drugs provide a multi-functional treatment for the neurite outgrowth. Therefore, we believe that carbon nanocarriers have great potential in the therapeutic applications of neurodegenerative diseases.
關鍵字(中) ★ 奈米碳粒子
★ 神經突觸生長
★ 神經退化性疾病
關鍵字(英) ★ Carbon Dots (CDs)
★ Neurite Outgrowth
★ Neurodegenerative Diseases
論文目次 摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 XI
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 相關研究與回顧 3
1-2-1 神經退化性疾病 3
1-2-2 促使神經突觸生長介紹 5
1-2-3 奈米粒子促進神經生長的優勢 9
1-3 研究動機 11
1-4 論文架構說明 13
第二章 基礎原理介紹 14
2-1 奈米碳粒子的發光機制 14
2-1-1 量子侷限效應 14
2-1-2 表面缺陷效應 16
2-2 奈米碳粒子合成方法 16
2-2-1 自上而下的合成路線 18
2-2-1-1 電弧放電法 18
2-2-1-2 雷射燒蝕法 19
2-2-1-3 電化學剝離法 20
2-2-1-4 酸蝕刻法 21
2-2-2 自下而上的合成路線 22
2-2-2-1 水熱合成法 22
2-2-2-2 熱氧化法 23
2-2-2-3 微波合成法 25
2-3 Rab13與Rab14促進神經生長之機制 26
第三章 實驗方法與分析系統架構 28
3-1 實驗材料與藥品 28
3-2 製備奈米碳粒子 31
3-3 奈米碳粒子表面修飾 31
3-3-1 修飾聚乙二醇於碳粒子表面 (CD+PEG) 32
3-3-2 修飾聚次乙亞胺於碳粒子表面 (CD+PEI) 32
3-3-3 修飾聚丙烯酸於碳粒子表面 (CD+PAA) 32
3-3-4 修飾聚丙烯酸於碳粒子表面 (CD+mPEG-PEI) 33
3-4 奈米碳粒子之特性分析系統 33
3-4-1 動態光散射 33
3-4-2 穿透式電子顯微鏡 36
3-4-3 螢光光譜 37
3-4-4 傅立葉轉換紅外光譜 38
3-5 洋菜凝膠電泳(Agarose Gel Electrophoresis) 38
3-6 神經細胞培養 40
3-7 奈米碳粒子於神經細胞中活性試驗 40
3-8 螢光顯微鏡 41
3-9 神經細胞吞噬劑量試驗 42
3-10 神經細胞突觸增生試驗 43
3-11 質體DNA表現之影像分析 44
3-12 白藜蘆醇體外釋放 45
3-13 白藜蘆醇於氧化壓力的保護作用 45
第四章 實驗結果與分析 47
4-1 奈米碳粒子之物理性質 47
4-1-1 動態光散射分析 47
4-1-2 穿透式電子顯微鏡分析 50
4-1-3 觀察修飾不同官能基後奈米碳粒子螢光光譜之變化 51
4-1-4 傅立葉轉換紅外光譜之變化 55
4-2 細胞活性分析 58
4-3 吞噬劑量分析 60
4-4 奈米碳粒子與質體DNA包覆率分析 67
4-5 具質體DNA表現之影像分析 69
4-6 質體DNA促使神經細胞突觸增生分析 70
4-7 白藜蘆醇乘載率及釋放分析 73
4-7-1 乘載率 74
4-7-2 釋放分析 75
4-8 白藜蘆醇保護作用分析 76
第五章 結論 78
參考文獻 80
中英文名詞對照表 85
參考文獻 [1] P. Lucas, Traité philosophique et physiologique de l′hérédité naturelle dans les états de santé et de maladie du système nerveux (1847).
[2] B. A. Morel, Traité des dégénérescences physiques, intellectuelles et morales de l′espèce humaine (1857).
[3] C. S. Fere, La Famille névropathique (1894).
[4] P. F. Bray, “Sex-linked neurodegenerative disease associated with monilethrix,” Pediatrics 36, 417-420 (1965).
[5] D. A. Drachman, “The neurodegenerative disorders associated with progressive external ophthalmoplegia,” Arch Neurol. 18, 654-674 (1968).
[6] S. B. Prusiner, “Neurodegenerative diseases and prions,” N. Engl. J. Med. 344, 1516-1526 (2001).
[7] M. J. Prince, A. Wimo, M. M. Guerchet, G. C. Ali, Y. Wu, amd M. Prina, “World alzheimer report 2015 - the global impact of dementia: an analysis of prevalence, incidence, cost and trends,” Int J Alzheimers Dis. (2015).
[8] A. D. Gitler, P. Dhillon, and J. Shorter, “Neurodegenerative disease: models, mechanisms, and a new hope,” Dis Model Mech. 10, 499–502 (2017).
[9] C. G. Chung, H. Lee, and S. B. Lee, “Mechanisms of protein toxicity in neurodegenerative diseases,” Cell. Mol. Life Sci. 75, 3159–3180 (2018).
[10] Nobel Prize. org, “The nobel prize in physiology or medicine 1960,” https://www.nobelprize.org/prizes/medicine/1960/summary/.
[11] Food and Drug Administration, “Namzaric (memantine hydrochloride extended-release/donepezil hydrochloride) Capsules,” https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/206439Orig1s000TOC.cfm..
[12] D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs from 1981 to 2014,” J. Nat. Prod. 79, 629–661 (2016).
[13] B. Winner and J. Winkler, “Adult neurogenesis in neurodegenerative diseases,” Cold Spring Harb. Perspect. Biol. 7, (2015).
[14] M. Yu, Y. Huang, J. Ballweg, H. Shin, M. Huang, D. E. Savage, M. G. Lagally, E. W. Dent, R. H. Blick, and J. C. Williams, “Semiconductor nanomembrane tubes: three-dimensional confinement for controlled neurite outgrowth,” ACS Nano. 5, 2447–2457 (2011).
[15] N.Li, X. Zhang, Q. Song, R. Suac, Q. Zhang, T. Kong, L. Liu, G, Jin, M. Tang, and G. Cheng, “The promotion of neurite sprouting and outgrowth of mouse hippocampal cells in culture by graphene substrates,” Biomaterials 32, 9374-9382 (2011).
[16] M. Marcus, H. Skaat, N. Alon, S. Margel, and O. Shefi, “NGF-conjugated iron oxide nanoparticles promote differentiation and outgrowth of PC12 cells,” Nanoscale 7, 1058-1066 (2015).
[17] R. Alyautdin, I. Khalin, M. I. Nafeeza, M. H. Haron, and D. Kuznetsov, “Nanoscale drug delivery systems and the blood–brain barrier,” Int. J. Nanomedicine 9, 795–811 (2014).
[18] A. Z.Wilczewska, K. Niemirowicz, K. H. Markiewicz, and H. Car, “Nanoparticles as drug delivery systems,” Pharmacol Rep. 64, 1020-1037 (2012).
[19] K. Nekoueian, M. Amiri, M. Sillanpää, F. Marken, R. Boukherroub, and Sabine Szunerits, “Carbon-based quantum particles: an electroanalytical and biomedical perspective,” Chem. Soc. Rev. 48, 4281-4316 (2019).
[20] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, and W. A. Scrivens, “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments,” J. Am. Chem. Soc. 126, 12736–12737 (2004).
[21] I. L. Medintz, H. T. Uyeda, E. R. Goldman, and Hedi Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater. 4, 435– 446 (2005).
[22] K. M. Tripathi, A. K. Sonker, A. Bhati, J. Bhuyan, A. Singh, A. Singh, S. Sarkar, and S. K. Sonkar, “Large-scale synthesis of soluble graphitic hollow carbon nanorods with tunable photoluminescence for the selective fluorescent detection of DNA,” New J. Chem. 40, 1571-1579 (2016).
[23] A. H. Loo, Z. Sofer, D. Bouša, P. Ulbrich, A. Bonanni, and M. Pumera, “Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection,” ACS Appl. Mater. Interfaces, 8, 1951-1957 (2016).
[24] Physical Measurement Laboratory of NIST, “Bohr radius,” https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0.
[25] S. Zhua, L. Wang, B. Li, Y. Song, X. Zhao, G. Zhang, S. Zhang, S. Lu, J. Zhang, H. Wang, H. Sun, and B. Yang, “Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots,” Carbon 77, 462-472 (2014).
[26] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, and S. P. Lau, “Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots,” ACS Nano 6, 5102-5110 (2012).
[27] L. Bao, Z. Zhang, Z. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, and D. Pang, “Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism,” Adv. Mater. 23, 5801-5806 (2011).
[28] H. Ding, S. Yu, J. Wei, and H. Xiong, “Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism,” ACS Nano, 10, 484-491 (2016).
[29] N. Arora and N.N.Sharma, “Arc discharge synthesis of carbon nanotubes: Comprehensive review,” Diam Relat Mater. 50, 135-150 (2014).
[30] D. Reyes, M. Camacho, M. Camacho, M. Mayorga, D. Weathers, G. Salamo, Z. Wang, amd A. Neogi, “Laser ablated carbon nanodots for light emission,” Nanoscale Res. Lett. 11, 424 (2016).
[31] J. Zhou, C. Booker, R. Li, X. Zhou, T. Sham, X. Sun, and Z. Ding, “An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs),” J. Am. Chem. Soc. 129, 744-746 (2007).
[32] Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, and C. M. Li, “One-step and high yield simultaneous preparation of single- and multi-layer graphenequantum dots from CX-72 carbon black,” J. Mater. Chem. 22, 8764-8766 (2012).
[33] H. He, X. Liu, S. Li, X. Wang, Q. Wang, J. Li, J. Wang, H. Ren, B. Ge, S. Wang, X. Zhang, and F. Huang, “High-density super-resolution localization imaging with blinking carbon dots,” Anal. Chem. 89, 11831–11838 (2017).
[34] Z. C. Yang, M. Wang, A. M. Yong, S. Y. Wong, X. H. Zhang, H. Tan, A. Y. Chang, X. Li, and J. Wang, “Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate,” Chem. Commun. 47, 11615-11617 (2011).
[35] Y. Yang, J. Cui, M. Zheng, C. Hu, S. Tan, Y. Xiao, Q. Yang and Y. Liu, “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chem. Commun. 48, 380-382 (2012).
[36] V. Sharma, P. Tiwari, and S. M. Mobin, “Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging,” J. Mater. Chem. 5, 8904-8924 (2017).
[37] P. Chen, Y. Chen, P. Hsu, C. Shiha, and H. Chang, “Photoluminescent organosilane-functionalized carbon dots as temperature probes,” Chem. Commun. 49, 1639-1641 (2013).
[38] K. M. Tripathi, A. Tyagi, M. Ashfaqa, and R. G. Gupta, “Temperature dependent, shape variant synthesis of photoluminescent and biocompatible carbon nanostructures from almond husk for applications in dye removal,” RSC Adv. 6, 29545-29553 (2016).
[39] M. Xue, J. Zhao, Z. Zhan, S. Zhao, C. Lan, F. Ye, and Hong Liang, “Dual functionalized natural biomass carbon dots from lychee exocarp for cancer cell targetable near-infrared fluorescence imaging and photodynamic therapy,” Nanoscale 10, 18124-18130 (2018).
[40] Y. Liu, N.Xiao, N. Gong, H. Wang, X. Shi, W. Gu, amd L.Ye, “One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes,” Carbon 68, 258-264 (2014).
[41] K. Jiang, Y. Wang, X. Gao, C. Cai, and H. Lin. “Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation,” Angew. Chem. Int. Ed 57, 6216-6220 (2018).
[42] M. L. Mignogna and P. D′Adamo, “Critical importance of RAB proteins for synaptic function,” Small GTPases. 9, 145–157 (2018).
[43] S. D. Giovanni, A. D. Biase, A. Yakovlev, T. Finn, J. Beers, E. P. Hoffman, and A. I. Faden, “In Vivo and in Vitro Characterization of Novel Neuronal Plasticity Factors Identified following Spinal Cord Injury,” J. Biol. Chem. 280, 2084-2091 (2005).
[44] J. R. Junutula, A. M. D.Maziére, A. A. Peden, K. E. Ervin, R. J. Advani, S. M. v. Dijk, J. Klumperman, and R. H. Scheller, “Rab14 is involved in membrane trafficking between the golgi complex and endosomes,” Mol. Biol. Cell 15, 2049-2522 (2004).
[45] P. Lall, A. J. Lindsay, S. Hanscom, T. Kecman, E. S. Taglauer, U. M. McVeigh,E. Franklin, M. W. McCaffrey, and A. R. Khan, “Structure-Function Analyses of the Interactions between Rab11 and Rab14 Small GTPases with Their Shared Effector Rab Coupling Protein (RCP),” J Biol Chem. 290, 18817–18832 (2015).
[46] C. N. Lunardi, A. J. Gomes, F. S. Rocha, J. D. Tommaso, and G. S. Patience, “Experimental methods in chemical engineering:Zeta potential,” Can J Chem Eng 99, 627-639 (2020).
[47] Malvern Panalytical Ltd, “Zetasizer Nano ZS90,” https://www.malvernpanalytical.com/en/support/product-support/zetasizer-range/zetasizer-nano-range/zetasizer-nano-zs90.
[48] JEOL Ltd., “JEM-2100 Electron Microscope,” https://www.jeol.co.jp/en/products/detail/JEM-2100.html.
[49] HORIBA, “FluoroMax,” https://www.horiba.com/en_en/products/detail/action/show/Product/fluoromax-1576/.
[50] JASCO, “FT/IR-4000 Series of FTIR Spectrometers,” https://jascoinc.com/products/spectroscopy/ftir-spectrometers/models/ftir-4000-series/.
[51] Major science, “Mini Horizontal Gel Electrophoresis System, MJ-105A,” https://www.majorsci.com/product-Mini-Horizontal-Gel-Electrophoresis-System,-MJ-105A-MJ-105A.html.
[52] Molecular Devices, “Multi-Mode Microplate Readers,” https://www.moleculardevices.com/products/microplate-readers/multi-mode-readers.
[53] ZEISS, “ZEISS Axio Observer for Life Science Research,” https://www.zeiss.com/microscopy/int/products/light-microscopes/axio-observer-for-biology.html.
[54] L. Shi, Y. Li, X. Li, X. Wen, G. Zhang, J. Yang, C. Donga, and S. Shuang, “Facile and eco-friendly synthesis of green fluorescent carbon nanodots for applications in bioimaging, patterning and staining,” Nanoscale 7, 7394-7401 (2015).
[55] N. B. Colthup, Spectra-Structure Correlations in the Infra-Red Region (1950).
[56] T. Ebata, T. Watanabe, and N. Mikami, “Evidence for the Cyclic Form of Phenol Trimer: Vibrational Spectroscopy of the OH Stretching Vibrations of Jet-Cooled Phenol Dimer and Trimer,” J. Phys. Chem. 99, 5761-5764 (1995).
[57] R. M. D. Soares, A. M. F. Lima, R. V. B. Oliveira, A. T. N. Pires, and V. Soldi, “Thermal degradation of biodegradable edible films based on xanthan and starches from different sources,” Polym. Degrad. Stab. 90, 449-454 (2005).
[58] P. Zielinski and I. G. D. Lana, “An FTIR spectroscopic view of the initiation of ethylene polymerization on Cr/SiO2 catalyst,” J. Catal. 137, 368-376 (1992).
[59] ACE Biolabs, “Cell culture,” https://www.acebiolab.com/EN/news/43.
[60] H. Hatakeyama, H. Akita, and H. Harashima, “A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma,” Adv. Drug Deliv. Rev. 63, 152-160 (2011).
指導教授 簡汎清 孫慶成(Fan-Ching Chien Ching-Cherng Sun) 審核日期 2021-9-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明