博碩士論文 108429003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.137.219.221
姓名 張佑偵(Yu-Chen Chang)  查詢紙本館藏   畢業系所 經濟學系
論文名稱 產業依存與跨產業報酬預測性:機器學習方法之應用
相關論文
★ 消費財富效果不對稱分析: 馬可夫轉換共同趨勢模型之應用★ 股票市場報酬與波動性外溢效果分析
★ 中國大陸勞動合同法與企業所得稅法對台商的衝擊與因應★ 結構FAVAR模型與台灣貨幣政策分析
★ 通貨膨脹率預測:考慮結構變動之動態因子模型應用★ 匯率因子與市場基要之預測表現
★ 台灣大小公司報酬與流動性之實證研究★ 台灣外匯暨股票市場流動性與景氣循環關係之探討
★ 台灣經濟成長率之混合頻率預測-MIDAS迴歸應用★ 油價對匯率預測能力之分析
★ 重新驗證遠期匯率不偏性假說: Bonferroni Q 檢定之應用★ 台灣期貨市場處份效果之研究
★ 寡占廠商成本歧異下之最適產業與貿易政策★ The Macroeconomic Effects of Foreign Direct Investment
★ 平行輸入、仿冒與服務品質★ 經濟成長、消費者信心與銀行風險
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以台灣股票市場的產業加權指數報酬作為預測標的,建構產業輪動投資組合,探討Lasso迴歸是否真的有助於投資決策,通過實證結果發現,樣本內結果顯示前一期產業報酬對於個別產業報酬有一定的預測能力,台灣各產業間存在連動性,且個別產業能預測其他產業以及被其他產業預測的預測能力不一。紡織纖維類、金融保險業、資訊服務業及建材營造類常被Lasso選擇預測其他產業的超額報酬率。此外,本文基於OLS post-Lasso方法去建構產業輪動投資組合,將預測出來的報酬率分五等分位,做多(做空)預測超額報酬率較好(較差)的產業加權指數,發現OLS post-Lasso投資組合的表現尚可,其年化平均超額報酬率和夏普比率均高於使用OLS來建構的投資組合,同時,OLS post-Lasso的投資組合在景氣較不好期間有較好的投資表現。
摘要(英) This paper uses the industry-weighted index returns of Taiwan stock market as the target of forecast, constructs an industry-rotation portfolio, and explores whether Lasso regression is really helpful for investment decision-making. The in-sample results show that some industries can predict the excess return of other industries. The textile fiber, finance and insurance industry, information service industry, and building construction industry are often selected by Lasso to predict the excess return of other industries. In addition, this paper constructs an industry-rotation portfolio based on OLS post-Lasso, buys (sells) industry-weighted indexes that predicts highest (lowest) excess returns , and finds that the portfolio based on OLS post-Lasso has not bad performance, and its annual average excess return and sharpe ratio are both higher than the portfolio based on OLS. At the same time, the portfolio based on OLS post-Lasso has better investment performance during periods of bad economic conditions.
關鍵字(中) ★ Lasso
★ OLS post-Lasso
★ 預測迴歸模型
關鍵字(英) ★ Lasso
★ OLS post-Lasso
★ Predictive regression
論文目次 目錄
第一章 緒論 ............................................... 1
第二章 文獻回顧 ............................................... 4
2.1 產業預測股價之文獻探討 ............................................... 4
2.2 迴歸模型正規化之文獻回顧 ............................................... 5
第三章 研究方法 ............................................... 8
3.1 模型架構 ............................................... 8
3.2 資料來源與樣本選擇 ............................................... 10
第四章 實證結果 ............................................... 12
4.1 全樣本敘述統計 ............................................... 12
4.2 樣本內迴歸結果 ............................................... 16
4.3 樣本外迴歸結果 ............................................... 23
4.4 景氣循環下的投資組合表現 ............................................... 24
4.5 基於樣本迴歸結果探討Lasso表現 ............................................... 26
第五章 結論與建議 ............................................... 28
5.1 研究結果 ............................................... 28
5.2 研究限制與建議 ............................................... 28
參考文獻 ............................................... 30
附錄 ............................................... 34
參考文獻 英文文獻
Al-Fayoumi, N. A., B. A. Khamees and A. A. Al-Thuneibat (2009), “Information transmission among stock return indexes: Evidence from the Jordanian stock market,” International Research Journal of Finance and Economics, 24, 194-208.
Belloni, A. and V. Chernozhukov (2013), “Least squares after model selection in high-dimensional sparse models,” Bernoulli, 19, 521-547.
Bessler, W. and D. Wolff (2017), “Portfolio optimization with industry return prediction models,” 30th Australasian Finance and Banking Conference, Available at SSRN: https://ssrn.com/abstract=3011135.
Diebold, F. and K. Yilmaz (2012), “Better to Give than to Receive: Predictive Directional Measurement of Volatility Spillover,” International Journal of Forecasting, 28, 57-66.
Driesprong, G., B. Jacobsen and B. Maat (2008), “Striking oil: another puzzle?” Journal of Financial Economics, 89, 307-327.
Eleswarapu, V. R. and A. Tiwari (1996), “Business cycles and stock market returns: Evidence using industry‐based portfolios,” Journal of Financial Research, 19, 121-134.
Gidofalvi, G. and C. Elkan (2001), “Using news articles to predict stock price movements,” Department of Computer Science and Engineering, University of California, San Diego.
Hoerl, A. E. and R. W. Kennard (1970), “Ridge regression: Biased estimation for nonorthogonal problems,” Technometrics, 12, 55-67.
Hong, H., W. Torous and R. Valkanov (2007), “Do industries lead the stock market?” Journal of Financial Economics, 83, 367-396.
Hurvich, C. M. and C.-L. Tsai (1989), “Regression and time series model selection in small samples,” Biometrika, 76, 297-307.
Li, Q., T. Wang, P. Li, L. Liu, Q. Gong and Y. Chen (2014), “The effect of news and public mood on stock movements,” Information Sciences, 278, 826-840.
Rapach, D. E., J. Strauss, J. Tu and G. Zhou (2015), “Industry interdependencies and cross-industry return predictability,” Working Paper, Washington University in St. Louis.
Rapach, D. E., J. K. Strauss, J. Tu and G. Zhou (2019), “Industry return predictability: A machine learning approach,” The Journal of Financial Data Science, 1, 9-28.
Taddy, M. (2017), “One-step estimator paths for concave regularization,” Journal of Computational and Graphical Statistics, 26, 525-536.
Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288.
Wang, S., B. Ji, J. Zhao, W. Liu and T. Xu (2018), “Predicting ship fuel consumption based on LASSO regression,” Transportation Research Part D: Transport and Environment, 65, 817-824.
Welch, I. and A. Goyal (2008), “A comprehensive look at the empirical performance of equity premium prediction,” The Review of Financial Studies, 21, 1455-1508.
Zhang, Y., F. Ma and Y. Wang (2019), “Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?” Journal of Empirical Finance, 54, 97-117.
Zhao, P. and B. Yu (2006), “On model selection consistency of Lasso,” The Journal of Machine Learning Research, 7, 2541-2563.
Zou, H. (2006), “The Adaptive Lasso and Its Oracle Properties,” Journal of the American Statistical Association, 101, 1418-1429.
Zou, H. and T. Hastie (2005), “Regularization and variable selection via the elastic net,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 301-320.
中文文獻
郝沛毅、歐仁彬、黃天受、林振穎、吳建生(2018), “透過新聞文章預測股價漲跌趨勢-結合情緒分析、主題模型與模糊支持向量機,” 資訊管理學報, 25, 363-395。
張倉耀(2013), “原油價格及其波動與台灣股價指數長期關係之探討,” 會計與財金研究, 6, 47-64。
郭維裕、李淯靖、陳致綱、林建秀 (2015), “台灣產業指數的外溢效果,” 經濟論文叢刊, 43, 407-442。
黃台心、鍾銘泰、楊淳如 (2015), “運用向量誤差修正模型探討台灣各產業與股市大盤間資訊傳遞速度,” 管理與系統, 22, 1-31。
指導教授 徐之強(Chih-Chiang Hsu) 審核日期 2021-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明