博碩士論文 108523016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.219.206.102
姓名 高國哲(Kuo-Che Kao)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 5G無允諾上行隨機存取策略與資源配置方法之研究
(Study of 5G Grant Free Random Access Policy and Resource Allocation Schemes)
相關論文
★ 應用MSPP至DWDM都會光纖網路的設計★ 光網路與WiMAX整合架構研究及其簡化雛型實驗
★ 以Linux系統為基礎之NAT效能優化研究及其實作★ 光波長劃分多工網路之路徑保護機制研究
★ 標籤交換網路下具有服務品質路由安排之研究★ 以訊務相關性為基礎的整合性服務可調整QoS排程器之研究
★ 以群體播送支援IPv6環境下移動式網路連結更新之研究★ 無線區域網路資源動態分配之效能研究
★ 在微觀移動環境下有效資源保留之路徑管理研究★ 無線網路交握程序之預先認證方法分析與比較
★ 無線區域網路虛擬允入控制之研究★ IPv6環境下移動網路之連結更新程序及其效能之研究
★ 具有限數量波長轉換節點的分波多工網路之群播波長分配與容量計算研究★ 階層化行動式IPv6移動錨點選擇機制研究
★ 具高能量移動節點之叢集式感測網路 效能研究★ 預先註冊之快速換手階層化行動式IPv6研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著第五代行動通訊技術(5th generation mobile networks, 5G)商用網路推出,越來越多的物聯網應用被提出,其中許多遠端控制的應用如:工廠自動化、自動駕駛、遠程醫療手術等需要實時高精度的操作,對封包的成功率及延遲有嚴苛的要求。5G白皮書提出了三大場景:增強型行動寬頻通訊(Enhanced Mobile Broadband, eMBB)、超可靠低延遲通訊(Ultra-reliable and Low Latency Communications, URLLC)及大規模機器型通訊(Massive Machine Type Communications, mMTC),其中URLLC便是針對需要實時高精度的物聯網場景而設計,在此種場景下,32bytes的封包傳輸需在1ms內完成,且成功率需達到1-10-5。在5G的標準中,無允諾上行(Grant-Free)及混合式自動重送請求(Hybrid Automatic Repeat request, HARQ)被提出來達成URLLC的要求,前者繞過設備上行時需和基地台獲取傳輸許可的步驟來降低延遲,後者則是透過多次重傳相同封包以提升成功率。
本論文利用機器學習及數學模型兩種方式,針對HARQ的上限次數做出動態調整,以最少的重傳次數達成URLLC的要求,以減輕設備因連續重傳造成的負擔結果表明在URLLC頻繁傳輸時,降低其HARQ上限能夠改善eMBB的成功率,在動態調整HARQ的部分,機器學習的方式會因探索的機制而略有些不穩定,數學模型的方法能夠有較穩定的結果,但使用上也會有額外的條件限制。
摘要(英) With the launch of 5th generation mobile networks (5G) commercial networks, more and more IoT applications have been proposed. There are some of remote control applications such as factory automation, autonomous driving, and telemedicine surgery which requires real-time and high-precision operations. Based on those applications, it has strict requirements on the success rate and delay of the packet. The 5G white paper proposes three scenarios: Enhanced Mobile Broadband (eMBB), Ultra-reliable and Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), where URLLC is designed for IoT scenarios that require real-time and high-precision. In this scenario, 32bytes packet transmission needs to be completed within 1ms, and the success rate needs to reach 1-10-5. In the 5G standard, Grant-Free and hybrid automatic repeat request (Hybrid Automatic Repeat request, HARQ) are proposed to meet the requirements of URLLC. To reduce the delay, Grant-Free upload data without constructing UL-grant. HARQ is to increase the success rate by retransmitting the same packet multiple times.
This paper proposed two methods: machine learning and mathematical models to achieve the target. The goal of this paper is to make a dynamic adjustment to the maximum amount of re-transmission of HARQ. Also to reduce the burden of equipment caused by continuous retransmissions. Simulation result show that reduce the number of retransmission can improve the performance of eMBB. In adjustment of HARQ repk, the mathematical method is more stable than machine learning, but there are stricter conditions for use.
關鍵字(中) ★ 5G
★ 增強型行動寬頻通訊
★ 超可靠低延遲通訊
★ 無允諾上行
★ 混合式自動重送請求
關鍵字(英) ★ 5G
★ eMBB
★ URLLC
★ Grant-Free
★ Hybrid Automatic Repeat request
論文目次 摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 1
1.3章節概要 2
第二章 相關研究背景 4
2.1 5G三大場景 4
2.2 5G訊框架構 4
2.2.1 子載波間距 5
2.2.2 迷你時槽 6
2.2.3 頻域資源 7
2.3 傳輸速率 7
2.4 隨機存取過程 8
2.4.1 隨機存取前導碼 8
2.4.2 四步隨機存取過程 9
2.4.3兩步隨機存取過程 10
2.4.4 隨機存取週期 10
2.5 混合式自動重送請求 11
2.5.1 Blind repetitions 11
2.6 強化式學習 12
2.6.1 Q-learning 12
2.6.2 探索與開發 13
2.7 相關文獻 14
第三章 研究方法 17
3.1 系統架構 17
3.1.1 模擬情境 17
3.1.2 訊框架構 18
3.2系統參數 20
3.3 Q-method 21
3.3.1 Q-learning 架構流程 21
3.3.2 Reward Function 22
3.3.3 gNB流程 22
3.3.4 UE流程 23
3.4 HARQ estimated method 24
3.4.1 數學模型 24
3.4.2 HARQ estimated method的限制 28
3.4.3 gNB流程 29
3.4.4 UE流程 30
第四章 模擬結果與討論 32
4.1 模擬環境 32
4.1.1 環境參數 32
4.1.2 Q-learning 參數表 34
4.2模擬結果分析 35
4.2.1 保守估計與模擬結果 35
4.2.2 HARQ重傳次數對eMBB成功率之影響 36
4.2.3 Q-method訓練過程 37
4.2.4 Q-method與HARQ estimated method的比較 39
4.2.5 Q-method與HARQ estimated method面對環境變化時的表現 43
4.2.6當HEM未滿足使用條件之情形 45
4.2.7 Grant-Free週期對成功率之影響 46
第五章 結論 48
參考文獻 49
參考文獻 [1] "Study on Scenarios and Requirements for Next Generation Access Technologies," 3GPP TR 38.913 (Rel.16), 07 2020.
[2] "Technical Specification Group Radio Access Network;NR;Physical channels and modulation," 3GPP TS 38.211 (Rel.16), 1 2021.
[3] "Physical layer procedures for data," 3GPP TS 38.214 (Rel.16), 7 2020.
[4] "User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone," 3GPP TS 38.101 (Rel.16), 7 2020.
[5] "User Equipment (UE) radio access capabilities," 3GPP TS 38.306 (Rel.16), 11 2020.
[6] "RF Wireless World," [Online]. Available: https://www.rfwireless-world.com/calculators/5G-NR-maximum-throughput-calculator.html.
[7] "techplayon," 10 7 2019. [Online]. Available: https://www.techplayon.com/5g-nr-rach-preamble-types-long-and-short-preambles/.
[8] "Physical channels and modulation," 3GPP TS 38.211 (Rel.16), 7 2020.
[9] "NR and NG-RAN Overall description; Stage-2," 3GPP TS 38.300 (Rel.16), 1 2021.
[10] "Radio Resource Control (RRC);Protocol specification," 3GPP TS 38.331(Rel.15), 1 2020.
[11] L. Buccheri, S. Mandelli, S. Saur, L. Reggiani and M. Magarini, "Hybrid retransmission scheme for QoS-defined 5G ultra-reliable low-latency communications," 2018 IEEE Wireless Communications and Networking Conference, 11 6 2018.
[12] G. Li, R. Gomez, K. Nakamura and B. He, "Human-Centered Reinforcement Learning: A Survey," IEEE Transactions on Human-Machine Systems (Volume: 49), pp. 337 - 349, 7 5 2019.
[13] R. Ali, Y. B. Zikria, A. K. Bashir, S. Garg and H. S. Kim, "URLLC for 5G and Beyond: Requirements, Enabling Incumbent Technologies and Network Intelligence," IEEE Access ( Volume: 9), pp. 67064 - 67095, 16 4 2021.
[14] "Service requirements for the 5G system," 3GPP TS 22.261 (Rel.16), 4 2021.
[15] T. N. Weerasinghe, I. A. M. Balapuwaduge and F. Y. Li, "Preamble Reservation Based Access for Grouped mMTC Devices with URLLC Requirements," 2019 IEEE International Conference on Communications, 15 7 2019.
[16] Y. Liu, Y. Deng, M. Elkashlan, A. Nallanathan and G. K. Karagiannidis, "Analyzing Grant-Free Access for URLLC Service," IEEE Journal on Selected Areas in Communications (Volume: 39), 24 8 2020.
[17] J. Liu, M. Agiwal, M. Qu and H. Jin, "Online Control of Preamble Groups with Priority in Cellular IoT Networks," IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, 4 8 2020.
[18] M. Y. Abdelsadek, Y. Gadallah and M. H. Ahmed, "Resource Allocation of URLLC and eMBB Mixed Traffic in 5G Networks: A Deep Learning Approach," 2020 IEEE Global Communications Conference, 25 1 2021.
指導教授 陳彥文(Yen-Wen Chen) 審核日期 2021-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明