參考文獻 |
[1] Wang, Y.K.; Chen, H.Y. Intelligent Mobile Video Surveillance System with Multilevel Distillation. J. Electron. Sci. Technol. 2017, 15, pp. 133–140.
[2] Fan, C.T.; Wang, Y.K.; Huang, C.R. Heterogeneous information fusion and visualization for a large-scale intelligent video surveillance system. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, pp. 593–604.
[3] Pan, Z.; Jin, P.; Lei, J.; Zhang, Y.; Sun, X.; Kwong, S. Fast reference frame selection based on content similarity for low complexity HEVC encoder. J. Vis. Commun. Image Represent. 2016, 40, pp. 516–524.
[4] Dey, B.; Kundu, M.K. Enhanced Macroblock Features for Dynamic Background Modeling in H. 264/AVC Video Encoded at Low Bitrate. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, pp. 616–625.
[5] Lee, C.; Jung, Y.; Lee, S.; Oh, Y.; Kim, J. Real-Time Frame-Layer H.264 Rate Control for Scene-Transition Video at Low Bit Rate. IEEE Trans. Consum. Electron. 2007, 53, pp. 1084–1092.
[6] Chen, X.; Lu, F. A reformative frame layer rate control algorithm for H.264. IEEE Trans. Consum. Electron. 2010, 56, pp. 2806–2811.
[7] Network Simulator-2. Available online: http://www.isi.edu/nsnam/ns/ (accessed on 11 January 2019).
[8] Chen, J.Y.; Chiu, C.W.; Li, G.L.; Chen, M.J. Burst-aware dynamic rate control for H. 264/AVC video streaming. IEEE Trans. Broadcast. 2011, 57, pp. 89–93.
[9] Choi, H.; Yoo, J.; Nam, J.; Sim, D.; Bajic, I.V. Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 2013, 7, pp. 1112–1123.
[10] Khan, M.U.K.; Shafique, M.; Henkel, J. An adaptive complexity reduction scheme with fast prediction unit decision for HEVC intra encoding. 2013 IEEE International Conference on Image Processing, Melbourne, Australia, 15–18 September 2013; pp. 1578–1582.
[11] Lam, K.Y.; Chiu, C.K. The design of a wireless real-time visual surveillance system. Multimedia Tools and Applications. 2007, 33(2), pp. 175–199.
[12] Fiandrotti, A.; Gallucci, D.; Masala, E.; De Martin, J.C. Content-adaptive traffic prioritization of spatio-temporal scalable video for robust communications over QoS-provisioned 802.11e networks. Signal Process Image Commun. 2010, 25, pp. 438–449.
[13] IEEE Draft Standard 802.11e/D13.0, “Telecommunications and Information Exchange Between Systems--LAN/MAN Specific Requirements-- Part 11 Wireless Medium Access Control (MAC) and Physical Layer (PHY) specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements”. January 2005.
[14] Stefan Mangold, Sunghyun Choi, Peter May, Ole Klein, Guido Hiertz, Lothar Stibor, “IEEE 802.11e Wireless LAN for Quality of Service”, European Wireless ′2002, Florence, Italy, February 2002.
[15] Yan Li, Athina Markopoulou, John Apostolopoulos, Nicholas Bambos, “Content-Aware Playout and Packet Scheduling for Video Streaming Over Wireless Links” , Multimedia, IEEE Transactions on Volume 10, Issue 5, Aug. 2008, pp.885 – 895.
[16] Gabriel-Miro Muntean, Nikki Cranley, “Resource Efficient Quality-Oriented Wireless Broadcasting of Adaptive Multimedia Content”, IEEE TRANSACTIONS ON BROADCASTING, VOL. 53, NO. 1, MARCH 2007, pp. 362 – 368.
[17] Hulya Seferoglu, Athina Markopoulou, “Video-Aware Opportunistic Network Coding over Wireless Networks”, IEEE Journal on Volume 27, Issue 5, June 2009, pp. 713 – 728.
[18] Advanced Video Coding for Generic Audiovisual Services, ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC, v3: 2005, Amendment 3: Scalable Video Coding.
[19] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 9, pp. 1103–1120, Sep. 2007
[20] Thomas Schierl, Thomas Stockhammer, Thomas Wiegand, “Mobile Video Transmission Using Scalable Video Coding”, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 17, NO. 9, SEPTEMBER 2007.
[21] Gualdi G., Prati A., Cucchiara R., “Video Streaming for Mobile Video Surveillance”, Multimedia, IEEE Transactions on Volume 10, Issue 6, Oct. 2008, pp. 1142 – 1154.
[22] Han, B.; Zhou, B. VBR rate control for perceptually consistent video quality. IEEE Trans Consum. Electron. 2008, 54, pp. 1912–1919.
[23] Sun, Y.; Zhou, Y.; Feng, Z; He, Z.; Sun, S. Incremental rate control for H.264/AVC video compression. IET Image Process. 2009, 3, pp. 286–298.
[24] Wang, S.; Rehman, A.; Zeng, K.; Wang, J.; Wang, Z. SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 2017, 27, pp. 2189–2203.
[25] Bajic, I.V.; Ma, X. A testbed and methodology for comparing live video frame rate control methods. IEEE Signal Process. Lett. 2011, 18, pp. 31–34.
[26] Ma, S.; Gao, W.; Lu, Y. Rate-distortion analysis for H.264/AVC video coding and its application to rate control. IEEE Trans. Circuits Syst. Video Technol. 2005, 15, pp. 1533–1544.
[27] Lee, B.; Choi, J.Y. A rate perceptual-distortion optimized video coding HEVC. IEICE Trans. Inf. Syst. 2018, 101, pp. 3158–3169.
[28] Zhong, H.; Shen, S.; Fan, Y.; Zeng, X. A Low Complexity Macroblock Layer Rate Control Scheme Base on Weighted-Window for H.264 Encoder. International Conference on Multimedia Modeling, Klagenfurt, Austria, 4-6 January 2012; pp. 563–573.
[29] Dong, J.; Ling, N. A Context-Adaptive Prediction Scheme for Parameter Estimation in H.264/AVC Macroblock Layer Rate Control. IEEE Trans. Circuits Syst. Video Technol. 2009, 19, pp. 1108–1117.
[30] Li, B.; Li, H.; Li, L.; Zhang, J. λ Domain Rate Control Algorithm for High Efficiency Video Coding. IEEE Trans. Image Process. 2014, 23, pp. 3841–3854.
[31] Atta, R.; Ghanbari, M. Low-Complexity Joint Temporal-Quality Scalability Rate Control for H. 264/SVC. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, pp. 2331–2344.
[32] Geng, M.; Zhang, X.; Tian, Y.; Liang, L.; Huang, T. A fast and performance-maintained transcoding method based on background modeling for surveillance video. IEEE International Conference on Multimedia and Expo, Melbourne, Australia, 9–13 July 2012; pp. 61–66.
[33] Meuel, H.; Reso, M.; Jachalsky, J.; Ostermann, J. Superpixel-based segmentation of moving objects for low bitrate ROI coding systems. 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, Krakow, Poland, 27–30 August 2013; pp. 395–400.
[34] Kim, N.V.; Chervonenkis, M.A. Situation control of unmanned aerial vehicles for road traffic monitoring. Mod. Appl. Sci. 2015, 9, pp. 1–13.
[35] Meddeb, M.; Cagnazzo, M.; Pesquet-Popescu, B. Region-of-interest-based rate control scheme for high-efficiency video coding. APSIPA Trans. Signal Inf. Process. 2014, 3, e16. doi:10.1017/ATSIP.2014.15.
[36] Chen, X.; Wu, Z.; Zhang, X.; Xiang, Y.; Xie, S. One Novel Rate Control Scheme for Region of Interest Coding. International Conference on Intelligent Computing Methodologies, Lanzhou, China, 2–5 August 2016; pp. 139–148.
[37] Wu, C.Y.; Su, P.C. A Region of Interest Rate-Control Scheme for Encoding Traffic Surveillance Videos. 2009 Fifth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, Japan, 12–14 September 2009; pp. 194–197.
[38] A. Zainaldin, I. Lambadaris, B. Nandy, Adaptive Rate Control Low bit-rate Video Transmission over Wireless Zigbee Networks, IEEE International Conference on Communications, May. 2008, pp. 52 – 58
[39] V. Baroncini , R. Felice , G. Iacovoni, “Variable frame rate control jerkiness-driven”, J Real-Time Image Proc (2009) 4: pp. 167–179.
[40] Muthukrishnan, R.; Radha, M. M-Estimators in Regression Models. J. Math. Res. 2010, 2, pp. 23–27.
[41] Huber, P.J. Robust Estimation of Location Parameter. Ann. Math. Statistics 1964, 35, pp. 73–101.
[42] Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Publishers: Boston, MA, USA, 1977.
[43] Ostertagová, Eva. Modelling using polynomial regression. Procedia Engineering, 2012, 48, pp. 500-506.
[44] Theil, Henri. A rank-invariant method of linear and polynomial regression analysis. Indagationes Mathematicae 12(85), 1950, p173.
[45] Chen, X. D., Xu, G., Yong, J. H., Wang, G., Paul, J. C. Computing the minimum distance between a point and a clamped B-spline surface. Graphical Models, 2009, 71(3), pp. 107-112.
[46] Boyan, D. M., Zheng, K. X., Shijun, S. O. N. G., An algorithm for quickly calculating the minimum distance between a space point and a surface [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2004, 9.
[47] Xu, R. F., Chen, Z. T., Chen, W. Y. Grid algorithm for calculating the shortest distance from spatial point to free-form surface. Computer Integrated Manufacturing Systems, 2011, 17(1), pp. 95-100.
[48] Godbehere, A.B.; Matsukawa, A.; Goldberg, K. Visual tracking of human visitors under variable-lighting conditions for a responsive audio art installation. 2012 American Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 4305–4312.
[49] Ke, C.H.; Shieh, C.K.; Hwang, W.S.; Ziviani, A. An Evaluation Framework for More Realistic Simulations of MPEG Video Transmission. J. Inf. Sci. Eng. 2008, 24, pp. 425–440.
[50] Klaue, J.; Rathke, B.; Wolisz, A. EvalVid—A Framework for Video Transmission and Quality Evaluation. In Proceedings of the 13th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, Urbana, IL, USA, 2–5 September 2003; pp. 255–272.
[51] Kahaki, S.M.M.; Nordin, M.J.; Ashtari, A.H.; Zahra, S.J. Invariant feature matching for image registration application based on new dissimilarity of spatial features. PLoS ONE. 2016, 11, e0149710.
[52] Kahaki, S.M.; Arshad, H.; Nordin, M.J.; Ismail, W. Geometric feature descriptor and dissimilarity-based registration of remotely sensed imagery. PLoS ONE. 2018, 13, e0200676.
[53] Bondzulic, B.P.; Pavlovic, B.Z.; Petrovic, V.S.; Andric, M.S. Performance of peak signal-to-noise ratio quality assessment in video streaming with packet losses. Electron. Lett. 2016, 52, pp. 454–456.
[54] Kwon, S.K.; Tamhankar, A.; Rao, K.R. Overview of H. 264/MPEG-4 part 10. J. Vis. Commun. Image Represent. 2006, 17, pp. 186–216
[55] OH, Sangmin, et al. A large-scale benchmark dataset for event recognition in surveillance video. In: CVPR 2011. IEEE, 2011, pp. 3153-3160. |