博碩士論文 108522053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.133.111.29
姓名 黃宇睿(YU-JUI HUANG)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 多變量卷積長短期記憶神經網路結合氣象資訊之太陽能發電預測模型
(Solar power generation forecasting using Multivariate convolution Long-Short-Term Memory Network with weather information)
相關論文
★ 影片指定對象臉部置換系統★ 以單一攝影機實現單指虛擬鍵盤之功能
★ 基於視覺的手寫軌跡注音符號組合辨識系統★ 利用動態貝氏網路在空照影像中進行車輛偵測
★ 以視訊為基礎之手寫簽名認證★ 使用膚色與陰影機率高斯混合模型之移動膚色區域偵測
★ 影像中賦予信任等級的群眾切割★ 航空監控影像之區域切割與分類
★ 在群體人數估計應用中使用不同特徵與回歸方法之分析比較★ 以視覺為基礎之強韌多指尖偵測與人機介面應用
★ 在夜間受雨滴汙染鏡頭所拍攝的影片下之車流量估計★ 影像特徵點匹配應用於景點影像檢索
★ 自動感興趣區域切割及遠距交通影像中的軌跡分析★ 基於回歸模型與利用全天空影像特徵和歷史資訊之短期日射量預測
★ Analysis of the Performance of Different Classifiers for Cloud Detection Application★ 全天空影像之雲追蹤與太陽遮蔽預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-6以後開放)
摘要(中) 太陽能發電正逐漸成為台灣再生能源的一大主力,隨著其發電占比的增加,維持電網的穩定性上受到了一大挑戰,因此為了智慧電網的發展,太陽能發電量預測成為了一項重要議題。
本論文數據集來自太陽能發電系統中監控的多個逆變器發電量資料,因此需要設計多變量時間序列預測模型。在使用傳統建模方法的情況下,可能產生過多的計算成本與難以學習數據的多變量依賴關係,因此本論文中使用深度學習模型,結合卷積神經網路與長短期記憶循環網路預測未來一天後的逐時發電量。利用卷積神經網路提取多時間序列的特徵,而長短期記憶神經網路同時預測出多變量結果。為了更準確的預測結果,我們使用數值天氣預報中的氣象資訊進行特徵選擇,並結合天氣特徵訓練模型,並進一步根據預測日降雨條件分別晴天與雨天模型,在實驗中顯示結合氣象資訊的方式能夠使進一步降低誤差。最後考慮到台灣地區南北地區的氣候狀況差異,評估包含多個不同地區的案場的實驗結果,驗證氣象資訊結合訓練能夠廣泛應用於台灣不同氣候的地區。
摘要(英) Solar power is gradually becoming the main force of renewable energy in Taiwan. As the proportion of solar power generation increases, the challenging task of maintaining the stability of the grid becomes crucial. Therefore, for the development of smart grids, solar power generation forecasts has become an important issue.
The dataset in this thesis comes from the power generation data of multiple inverters monitored in a solar power system. It is desirable to design a multivariable time series to forecast the generated power of multiple inverters. Traditional modeling methods lead to relatively high computational costs and difficulties in capturing multivariate dependencies of data. Therefore, we propose a deep learning model, which combines convolutional neural network and long- short term memory recurrent network to predict the day-ahead hourly power generation. In this model, the convolutional neural network is used to extract the features of multivariate time series, and the long-short term memory network predicts the multivariate results.
In order to make the results more accurate, we use the data of Numerical Weather Prediction and perform feature selection to combine the weather features to train the model. The proposed method further separates the sunny and rainy models according to the rainfall condition of forecast day. Experiments show that the combination of weather information can further reduce the errors. Finally, considering the difference in weather conditions between the northern and southern parts of Taiwan, experiments involving multiple sites in different regions were evaluated to verify that the combination of weather information can be widely used in regions with different weather conditions in Taiwan.
關鍵字(中) ★ 深度學習
★ 卷積神經網路
★ 長短期記憶
★ 多變量
★ 太陽能發電量
關鍵字(英) ★ Deep learning
★ Convolutional neural network
★ Long short-term memory
★ Multivariate
★ solar power
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 1
1.3 論文架構 2
第二章 相關研究 3
2.1 過往研究 3
2.1.1統計方法與機器學習方法 3
2.1.2神經網路方法 4
2.1.3混合模型 5
2.2 重要神經網路架構 6
2.2.1卷積層(Convolution layer) 6
2.2.2池化層(Pooling layer) 6
2.2.3全連接層(Fully connected layer) 7
2.2.4長短期記憶 - 門控循環單元網路(Gated Recurrent Unit) 8
第三章 研究方法 10
3.1 模型架構 10
3.2 資料收集 11
3.2.1逆變器功率資料 11
3.2.2 歷史觀測天氣數據 13
3.2.3 預測天氣數據 14
3.3 實驗流程 14
3.3.1資料前處理流程 15
3.3.2訓練與評估方法 17
3.4 超參數實驗方法 18
3.5 天氣特徵選用與結合 20
3.6 歷史觀測與預測天氣數據結果差異實驗方法 23
第四章 實驗結果 24
4.1 模型超參數選用實驗 25
4.1.1卷積數據填充實驗結果 25
4.1.2池化層使用與卷積核長度實驗結果 26
4.1.3卷積核數量實驗結果 27
4.2 各案場天氣特徵結合實驗 29
4.2.1桃園仁和國小 29
4.2.2臺南六甲院區 31
4.2.3桃園豐達科技一期 33
4.2.4桃園豐達科技二期 35
4.2.5桃園豐達科技三期 37
4.2.6實驗結果結論 39
4.3 使用歷史觀測天氣特徵與預測天氣特徵的差異實驗結果 40
4.4 其他模型結果比較 42
4.5 天氣特徵結合模型結果可視化 44
第五章 結論與未來研究方向 46
參考文獻 47
參考文獻 [1]2021太陽能趨勢|太陽能還有發展性嗎?解析台灣、國際綠能之路。取自https://blog.pgesolar.com.tw/2021/02/08/%E5%A4%AA%E9%99%BD%E8%83%BD%E8%B6%A8%E5%8B%A2
[2]智慧電網介紹。取自https://smartgrid.taipower.com.tw/en/index.aspx
[3]Pedro, Hugo TC, and Carlos FM Coimbra. "Assessment of forecasting techniques for solar power production with no exogenous inputs." Solar Energy 86.7 (2012): 2017-2028.
[4]Fentis, Ayoub, et al. "A Machine Learning Based Approach for Next-Day Photovoltaic Power Forecasting." 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS). IEEE, 2020.
[5]Suresh, Vishnu, et al. "Forecasting solar PV output using convolutional neural networks with a sliding window algorithm." Energies 13.3 (2020): 723.
[6]Sheng, Hanmin, et al. "Short-term solar power forecasting based on weighted Gaussian process regression." IEEE Transactions on Industrial Electronics 65.1 (2017): 300-308.
[7]Ordiano, Jorge Ángel González, et al. "Photovoltaic power forecasting using simple data-driven models without weather data." Computer Science-Research and Development 32.1-2 (2017): 237-246.
[8]Alomari, Mohammad H., Jehad Adeeb, and Ola Younis. "Solar photovoltaic power forecasting in jordan using artificial neural networks." International Journal of Electrical and Computer Engineering (IJECE) 8.1 (2018): 497-497.
[9]Zhu, Honglu, et al. "An improved forecasting method for photovoltaic power based on adaptive BP neural network with a scrolling time window." Energies 10.10 (2017): 1542.
[10]Aprillia, Happy, Hong-Tzer Yang, and Chao-Ming Huang. "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm." Energies 13.8 (2020): 1879.
[11]Tang, Xianlun, et al. "Short-term power load forecasting based on multi-layer bidirectional recurrent neural network." IET Generation, Transmission & Distribution 13.17 (2019): 3847-3854.
[12]Suresh, Vishnu, et al. "Forecasting solar PV output using convolutional neural networks with a sliding window algorithm." Energies 13.3 (2020): 723.
[13]Li, Gangqiang, et al. "Recurrent neural networks based photovoltaic power forecasting approach." Energies 12.13 (2019): 2538..
[14]Lai, Guokun, et al. "Modeling long-and short-term temporal patterns with deep neural networks." The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018.
[15]Cheng, Jiezhu, Kaizhu Huang, and Zibin Zheng. "Towards better forecasting by fusing near and distant future visions." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. No. 04. 2020.
[16]Zhen, Zhao, et al. "Deep learning based surface irradiance mapping model for solar PV power forecasting using sky image." IEEE Transactions on Industry Applications 56.4 (2020): 3385-3396.
[17]Shi, Jie, et al. "Forecasting power output of photovoltaic systems based on weather classification and support vector machines." IEEE Transactions on Industry Applications 48.3 (2012): 1064-1069
[18]Acharya, Shree Krishna, Young-Min Wi, and Jaehee Lee. "Day-Ahead Forecasting for Small-Scale Photovoltaic Power Based on Similar Day Detection with Selective Weather Variables." Electronics 9.7 (2020): 1117.
[19]Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.
[20]Ahn, Hyung Keun, and Neungsoo Park. "Deep RNN-Based Photovoltaic Power Short-Term Forecast Using Power IoT Sensors." Energies 14.2 (2021): 436.
[21]K Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position.” Biological cybernetics, 36(4), 193-202, 1980.
[22]LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.
[23]池化層示意圖、圖片來源取自https://www.quora.com/What-is-the-benefit-of-using-average-pooling-rather-than-max-pooling
[24] Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv:1412.3555 (2014).
[25]長短期記憶模型示意圖、圖片來源取自colah’s blog《Understanding LSTM Networks》:http://colah.github.io/posts/2015-08-Understanding-LSTMs
[26]太陽能電網示意圖,圖片來源取自http://gec.jp/jcm/projects/18pro_ken_01
[27]Bias–variance tradeoff,圖片來源取自https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
指導教授 鄭旭詠(Hsu-Yung Cheng) 審核日期 2021-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明