參考文獻 |
[1] Y.-H. Hsu, J.-H. Cheng, K.-Y. Liao, Y.-S. Wang, T.-H. Chen, H.-Y. Chen, C.-K.
Yen, and W. Liao, “Ntu smart edge for wireless virtual reality,” in 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan), 2020, pp.
1–2.
[2] Q.-V. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W.-J. Hwang, and
Z. Ding, “A survey of multi-access edge computing in 5g and beyond: Fundamentals, technology integration, and state-of-the-art,” IEEE Access, vol. 8, pp. 116 974–
117 017, 2020.
[3] B. Cao, L. Zhang, Y. Li, D. Feng, and W. Cao, “Intelligent offloading in multi-access
edge computing: A state-of-the-art review and framework,” IEEE Communications
Magazine, vol. 57, no. 3, pp. 56–62, 2019.
[4] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen, “In-edge ai: Intelligentizing mobile edge computing, caching and communication by federated learning,”
IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.
[5] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching, computing,
and radio resources for fog-enabled iot using natural actor–critic deep reinforcement
learning,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2061–2073, 2019.
[6] L. T. Tan and R. Q. Hu, “Mobility-aware edge caching and computing in vehicle
networks: A deep reinforcement learning,” IEEE Transactions on Vehicular Technology, vol. 67, no. 11, pp. 10 190–10 203, 2018.
[7] X. Hu, S. Liu, R. Chen, W. Wang, and C. Wang, “A deep reinforcement learningbased framework for dynamic resource allocation in multibeam satellite systems,”
IEEE Communications Letters, vol. 22, no. 8, pp. 1612–1615, 2018.
[8] Z. Du, Y. Deng, W. Guo, A. Nallanathan, and Q. Wu, “Green deep reinforcement
learning for radio resource management: Architecture, algorithm compression, and
challenges,” IEEE Vehicular Technology Magazine, vol. 16, no. 1, pp. 29–39, 2021.
[9] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast adaptation
of deep networks,” in International Conference on Machine Learning. PMLR,
2017, pp. 1126–1135.
[10] P.-C. Chen, Y.-C. Chen, W.-H. Huang, C.-W. Huang, and O. Tirkkonen, “Ddpgbased radio resource management for user interactive mobile edge networks,” in
2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5.
[11] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous Control with Deep Reinforcement Learning,” in International Conference on Learning Representations (ICLR), Feb. 2016.
[12] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for mobileedge computing with energy harvesting devices,” IEEE Journal on Selected Areas
in Communications, vol. 34, no. 12, pp. 3590–3605, 2016.
[13] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource allocation
for mobile-edge computation offloading,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.
[14] A. Al-Shuwaili and O. Simeone, “Energy-efficient resource allocation for mobile
edge computing-based augmented reality applications,” IEEE Wireless Communications Letters, vol. 6, no. 3, pp. 398–401, 2017.
[15] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for
mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24,
no. 5, pp. 2795–2808, 2016.
[16] J. Zhang, W. Xia, F. Yan, and L. Shen, “Joint computation offloading and resource
allocation optimization in heterogeneous networks with mobile edge computing,”
IEEE Access, vol. 6, pp. 19 324–19 337, 2018.
[17] T. Yang, Y. Hu, M. C. Gursoy, A. Schmeink, and R. Mathar, “Deep reinforcement
learning based resource allocation in low latency edge computing networks,” in 2018
15th International Symposium on Wireless Communication Systems (ISWCS), 2018,
pp. 1–5.
[18] T. Alfakih, M. M. Hassan, A. Gumaei, C. Savaglio, and G. Fortino, “Task offloading
and resource allocation for mobile edge computing by deep reinforcement learning
based on sarsa,” IEEE Access, vol. 8, pp. 54 074–54 084, 2020.
[19] N. Shan, X. Cui, and Z. Gao, ““drl+ fl”: An intelligent resource allocation model
based on deep reinforcement learning for mobile edge computing,” Computer Communications, vol. 160, pp. 14–24, 2020.
[20] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum,
H. Larochelle, and R. S. Zemel, “Meta-learning for semi-supervised few-shot classification,” arXiv preprint arXiv:1803.00676, 2018.
[21] C. Finn, K. Xu, and S. Levine, “Probabilistic model-agnostic meta-learning,”
in Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31.
Curran Associates, Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/
paper/2018/file/8e2c381d4dd04f1c55093f22c59c3a08-Paper.pdf
[22] M. Botvinick, S. Ritter, J. X. Wang, Z. Kurth-Nelson, C. Blundell, and D. Hassabis,
“Reinforcement learning, fast and slow,” Trends in cognitive sciences, vol. 23, no. 5,
pp. 408–422, 2019.
[23] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-policy metareinforcement learning via probabilistic context variables,” in International conference on machine learning. PMLR, 2019, pp. 5331–5340.
[24] J. D. Co-Reyes, Y. Miao, D. Peng, E. Real, Q. V. Le, S. Levine,
H. Lee, and A. Faust, “Evolving reinforcement learning algorithms,” in
International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=0XXpJ4OtjW
[25] X. Song, Y. Yang, K. Choromanski, K. Caluwaerts, W. Gao, C. Finn, and
J. Tan, “Rapidly adaptable legged robots via evolutionary meta-learning,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020,
pp. 3769–3776.
[26] Q. He, A. Moayyedi, G. Dan, G. P. Koudouridis, and P. Tengkvist, “A meta-learning ´
scheme for adaptive short-term network traffic prediction,” IEEE Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2271–2283, 2020.
[27] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimization,” in
International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=BJgklhAcK7
[28] K. Lee, Y. Seo, S. Lee, H. Lee, and J. Shin, “Context-aware dynamics model for
generalization in model-based reinforcement learning,” in International Conference
on Machine Learning. PMLR, 2020, pp. 5757–5766.
[29] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with
deep reinforcement learning,” in Proceedings of the 15th ACM workshop on hot
topics in networks, 2016, pp. 50–56.
[30] E. Z. Liu, A. Raghunathan, P. Liang, and C. Finn, “Decoupling exploration and exploitation for meta-reinforcement learning without sacrifices,” in International Conference on Machine Learning. PMLR, 2021, pp. 6925–6935.
[31] S. Belkhale, R. Li, G. Kahn, R. McAllister, R. Calandra, and S. Levine, “Modelbased meta-reinforcement learning for flight with suspended payloads,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1471–1478, 2021.
[32] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, “An introduction to
variational methods for graphical models,” Machine learning, vol. 37, no. 2, pp.
183–233, 1999.
[33] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[34] 3GPP TS 23.501, “System Architecture for the 5G System.”
[35] T. Xu, Q. Liu, L. Zhao, and J. Peng, “Learning to explore via meta-policy gradient,”
in International Conference on Machine Learning. PMLR, 2018, pp. 5463–5472. |