博碩士論文 89542001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.146.221.204
姓名 金繼昉(Chi-Fang Chin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於距離的譜群聚法及其在影像處理與生物資訊之應用
(Distance-based Spectral Clustering with Applications to Image Processing and Bioinformatics)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文我們提出了一個新穎的譜群聚法--基於距離的譜群聚法(distance-based spectral clustering),相對傳統的譜群聚法(spectral clustering)來說,若未能預知適當的相似度量(similarity measure)則其群聚結果將易產生不正確的群聚結果。因本法無需假設輸入的資料須預知適當的相似度量及預知其群聚數,輸入資料的群聚結果完全是根據資料本身的性質來判定完成。再者,因為對基於距離的譜群聚法而言所需的是成對距離矩陣(pairwise distance matrix),所以我們不需要對輸入的資料進行成對相似矩陣的轉化,基於此點,本方法能明顯地有別於傳統的譜群聚法。除此之外,本方法能考量各群聚的內部結構及不同群聚間的關係,也因此增強本方法對於不同群聚的區分能力進而能夠正確地萃取出各個群聚。
本方法成功地以Laplace operator 運用於成對距離矩陣而計算出對稱之高斯-拉普拉斯權重矩陣(Laplacian-of-Gaussian weighted matrix, i.e., LoG weighted matrix),並參考對稱之高斯-拉普拉斯權重矩陣的最大特徵值所對應的特徵向量,根據此特徵向量中所有元素的升冪排列將成對距離矩陣中的元素進行重新排列後形成了對角化之區塊結構(diagonal block-wise structure),我們可根據對角化產生之區塊結構進行自動的群聚萃取(automatic cluster extraction),在實驗結果分析上證明其群聚結果有著相當的正確性,同時也顯示本群聚法可適用於不同形態或具有龐大雜訊的模擬資料組。
除此之外,我們也將基於距離的譜群聚法應用於影像處理(image processing)及生物資訊(bioinformatics) 的真實問題上,對於不同領域的資料型態之實驗結果中驗證了此群聚法的可靠性ヽ可行性及可適性。我們相信基於距離的譜群聚法是個值得注意的群聚法。
摘要(英) In this dissertation, we propose a novel spectral clustering method, the distance-based spectral clustering, which makes no assumption on regarding both the suitable similarity measure and the prior-knowledge of cluster number. The proposed method is a new version of traditionally spectral clustering method, of which a distance pairwise matrix can be directly employed without transformation as a pairwise similarity matrix in advance. Moreover, the inter-cluster structure and the intra-cluster pairwise relationships are maximized in the proposed method to increase the discrimination capability on extracting clusters.
The Laplace operator is successfully applied by the proposed method to the pairwise distance matrix to produce the symmetric Laplacian of Gaussian (LoG) weighted matrix. According to the ascending order of the elements of the eigenvector corresponding to the first largest eigenvalue of the symmetric LoG weighted matrix, the pairwise distance matrix is reordered to exhibits the diagonal block-wise structure. Besides, the automatic cluster extraction is accomplished based on the diagonal block-wise structure. The experimental results of a number of various datasets show that the correctness of the extracted clusters and it is robust against noises even the high level of noises, besides, the experimental analysis demonstrates the outstanding performance of the proposed method.
Moreover, we apply the distance-based spectral clustering to the real problems in different fields including image processing and bioinformatics. Experimental results of these different types of data demonstrate its reliability, feasibility, and adaptability. We believe that the proposed distance-based spectral clustering is a remarkable clustering method.
關鍵字(中) ★ 基於距離的譜群聚法 關鍵字(英) ★ distance-based spectral clustering
論文目次 CONTENTS
CHAPTER 1 INTRODUCTOIN................................................................................1
1.1 Motivation........................................................................................................1
1.2 Related Work....................................................................................................2
1.3 Proposed Method.............................................................................................5
1.4 Application to Image Processing.....................................................................9
1.5 Application to Bioinformatics........................................................................10
1.6 Organization of the Dissertation....................................................................12
CHAPTER 2 DISTANCE-BASED SPECTRAL CLUSTERING.........................14
2.1 Rationale behind Distance-based Spectral Clustering...................................14
2.2 Overview of Distance-based Spectral Clustering..........................................19
2.3 Three Basic Stages of Distance-based Spectral Clustering...........................22
2.3.1 Laplacian of Gaussian (LoG) Weighted Matrix Calculation..............22
2.3.2 Eigenvalue Decomposition.................................................................24
2.3.3 Cluster Extraction...............................................................................25
2.3.3.1 Binarization...........................................................................25
2.3.3.2 Projection-on-Diagonal (PoD) Histogram Calculation.........26
2.3.3.3 Splitting Point Finding for Bipartition..................................27
2.3.3.4 Bipartition Point Correction..................................................30
2.4 Experiments...................................................................................................31
2.4.1 A Step-by-step Illustration of Distance-based Spectral Clustering.....31
2.4.2 Test Datasets and Clustering Results..................................................32
2.4.2.1 Noisy Datasets......................................................................34
2.4.2.2 Sparse Datasets.....................................................................35
2.4.3 Sensitivity to Clustering Parameters...................................................37
2.4.3.1 Sensitivity to Varianceσfor Convoluting PoD Histogram...38
2.4.3.2 Sensitivity to MinMax-Ratio for Terminal Condition..........39
2.4.3.3 Sensitivity to Cluster Size for Clustering..............................42 2.5 Discussions....................................................................................................43
CHAPTER 3 APPLICATION TO IMAGE PROCESSING: IMAGE
SEGMENTATION BY DISTANCE-BASED SPECTRAL
CLUSTERING.....................................................................................46
3.1 Background....................................................................................................46
3.2 Distance-based Spectral Clustering for Using in Image Segmentation based on Atomic Watershed Regions......................................................................47
3.2.1 The Framework....................................................................................50
3.2.2 Watershed Transformation...................................................................52
3.3 Experiments...................................................................................................54
3.3.1 An Intuitive Demonstration of One Simple Image.............................54
3.3.2 Experimental Results of Benchmark Images......................................56
3.4 Discussions....................................................................................................64
CHAPTER 4 APPLICATION TO BIOINFORMATICS: CO-TRANSCRIPTION RATE PROIFLES EXTRACTION BY DISTNACE-BASED SPECTRAL CLUSTERING.............................................................66
4.1 Background....................................................................................................67
4.2 Influence of mRNA Decay Rates on the Prediction of Transcription Rate Profiles from Gene Expression Profiles........................................................68
4.2.1 The Method..........................................................................................71
4.2.1.1 Dynamic Gene Regulation Model........................................71
4.2.1.2 B-spline Curve Fitting...........................................................72
4.2.1.3 Transcription Rate Profile Calculation..................................74
4.2.2 Results..................................................................................................74
4.2.2.1 Simulated Expression Data...................................................75
4.2.2.2 Refined Yeast Cell-Cycle Data.............................................79
4.2.2.3 Glucose-Limitation Data.......................................................81
4.3 Distance-based Spectral Clustering for Using in Co-transcription Rate Profiles Extraction........................................................................................85
4.3.1 The Framework....................................................................................86
4.3.2 Experiments .......................................................................................87
4.4 Discussions....................................................................................................89
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS.....................................92
5.1 Concluding Remarks......................................................................................92
5.2 Future Works..................................................................................................96
REFRENCES.............................................................................................................98
參考文獻 REFERENCES
[1] R. Duda and P. Hart, “Pattern classification and scene analysis,” John Wiley & Sons, New York, 1973.
[2] A.K. Jain and P.J. Flynn, “Image segmentation using clustering,” Advances in image understanding: a festschrift for azriel rosenfeld, IEEE Press, pp. 65-83, 1999.
[3] A. Ben-Dor and Z. Yakhin, “Clustering gene expression patterns,” Journal of Computational Biology, vol. 6, no. 3/4, pp. 281-297, 1999.
[4] D. Massart and L. Kaufman, “The interpretation of analytical chemical data by the use of cluster analysis,” John Wiley & Sons, New York, 1983.
[5] P. Arabie and L.J. Hubert, “An overview of combinatorial data analysis,” in: P. Arabie, L.J. Hubert & G.D. Soete (Eds.), Clustering and classification, World Scientific Publishing Co., NJ., pp. 5-63, 1996.
[6] M.J. Brusco and D. Steinley, “Clustering, seriation, and subset extraction of confusion data,” Psychological Methods, vol. 11, pp. 271-286, 2006.
[7] J. Clatworthy, D. Buick, M. Hankins, J. Weinman, and R. Horne, “The use and reporting of cluster analysis in health psychology: a review,” British Journal of Health Psychology, vol. 10, pp. 329-358, 2005.
[8] R. Xu and D. Wunsch II, “Survey of clustering algorithm,” IEEE Transactions on Neural Networks, col. 16, no. 3, pp. 645-678, 2005.
[9] S. Guha, R. Rastogi, and K. Shim, “Cure: an efficient clustering algorithm for large databases,” in: Proceedings of the ACM SIGMOD Conference, pp. 73-84, 1998.
[10] G. Karypis, E.H. Han, and V. Kumar, “Chameleon: A hierarchical clustering algorithm using dynamic modeling,” IEEE COMPUTER, vol. 32, pp. 68-75, 1999.
[11] C. Wallace, and D. Dowe, “Intrinsic classification by MML - the snob program,” in: Proceedings of the 7th Australian Joint Conference on Artificial Intelligence, UNE, World Scientific Publishing Co., pp. 37-44, 1994.
[12] D. Pelleg and A. Moore, “X-means: extending k-means with efficient estimation of the number of clusters,” in: Proceedings 17th ICML, 2000.
[13] X. Xu, M. Ester, H.P. Kriegel, and J. Sander, “A distribution-based clustering algorithm for mining in large spatial databases,” in: Proceedings of the 14th ICDE, pp. 324-331, 1998.
[14] W. Wang, J. Yang, and R.R. Muntz, “Sting+: an approach to active spatial data mining,” in: Proceedings 15th ICDE, pp. 116-125, 1999.
[15] J.B. MacQueen, “Some methods for classification and analysis of multivariate observations,” in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297, 1967.
[16] K.R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An introduction to kernel-based learning algorithms,” IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 181-201, 2001.
[17] R.T. Ng and J. Han, “Efficient and effective clustering method for spatial data mining,” in: Proceedings of the 20th VLDB Conference, 1994.
[18] B. Schölkopf and A.J. Smola, “Learning with kernels: support vector machines, regularization, optimization, and beyond,” MIT Press, Cambridge, MA, 2002.
[19] Y. Weiss, “Segmentation using eigenvectors: a unifying view,” in: Proceedings of the seventh IEEE international Conference on Computer Vision, IEEE Computer Society, pp. 975-982, 1999.
[20] A.Y. Ng, M.I. Jordan, and Y. Weiss, “On spectral clustering: analysis and an algorithm,” Proc. Neural Info. Processing Systems (NIPS 2001), MIT Press, pp. 849-856, 2002.
[21] M. Brand and K. Huang, “A unifying theorem for spectral embedding and clustering,” in: Proceedings of 9th International Conference on Artificial Intelligence and Statistics (AISTATS), 2003.
[22] U. von Luxburg, O. Bousquet, and M. Belkin, “Limits of spectral clustering,” Advances in Neural Information Processing Systems (NIPS) MIT Press, pp. 857- 864, 2005.
[23] I.S. Dhillon, “Co-clustering documents and words using bipartite spectral graph partitioning,” Knowledge Discovery and Data Mining, pp. 269-274, 2001.
[24] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888-905, 2000.
[25] C. Brew, and S.S. Walde, “Spectral clustering for German verbs,” in: Proceedings of EMNLP-2002, 2002.
[26] A. Paccanaro, J.A. Casbon, and M.A.S. Saqi, “Spectral clustering of protein sequences,” Nucleic Acids Research, vol. 34, no. 5, pp. 1571-1580, 2006.
[27] F.R.K. Chung, “Spectral graph theory,” Providence, RI: Amer. Math. Soc, 1997.
[28] W.E. Donath, “A. J. Hoffman, Lower bounds for the partitioning of graphs,” IBM Journal of Research and Development, vol. 17, pp. 420-425, 1973.
[29] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathematical Journal, vol. 23, no. 98, pp. 298-305, 1973.
[30] M. Fiedler, “A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory,” Czechoslovak Mathematical Journal, vol. 25, no. 100, pp. 619-633, 1975.
[31] M. Fiedler, “Laplacians of graphs and algebraic connectivity,” Combinatorics and Graph Theory, ser. Banach Center Publications, Warsaw, vol. 25, 1989, pp. 57-70.
[32] B.V. Dasarathy, “Nearest neighbor (NN) norms: NN pattern classification techniques,” Editor, 1991.
[33] Shakhnarovish and Darrell, Indyk, “Nearest-neighbor methods in learning and vision,” The MIT Press, 2005.
[34] U. von Luxburg, “A tutorial on spectral clustering,” U. Washington Tech Report, 2006.
[35] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward feature space analysis,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, pp. 603-619, 2002.
[36] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in: Proceedings of the Advances in Neural Information Processing Systems, pp. 1601-1608, 2005.
[37] L. Hagen and A.B. Kahng, “New spectral methods for ratio cut partitioning and clustering,” IEEE Transactions on Computed Aided Design, vol. 11, pp. 1074-1085, 1992.
[38] C. Ding, X. He, H. Zha, M. Gu, and H. Simon, “A min-max cut algorithm for graph partitioning and data clustering,” Proc. IEEE Int'l Conf. Data Mining, 2001.
[39] M. Meila and L. Xu, “Multiway cuts and spectral clustering,” U. Washington Tech Report, 2003.
[40] D. Marr, Vision, W. H. Freeman and Company, 1985.
[41] J.B. Tenenbaum, V. de Silva, and J.C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science, vol. 290, pp. 2319-2323, 2000.
[42] I.T. Young, J.J. Gerbrands, and L.J. Van Vliet, Fundamentals of Image Processing, Delft University of Technology, Netherlands, 1998.
[43] K.S. Fu and J.K. Mui, “A Survey of Image Segmentation,” Pattern Recognition, vol. 13, pp. 3-16, 1981.
[44] N.R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern Recognition, vol. 26, pp. 1277-1294, 1993.
[45] Y. Li, D. Lu, X. Lu, and J. Liu, “Interactive color image segmentation by region growing combined with Image enhancement based on bezier model,” in Proceedings of the Third International Conference on Image and Graphics (ICIG’04, pp. 96-99), 2004.
[46] M.D.G. Montoya, C. Gil, and A.I. Garc, “The load unbalancing problem for region growing image segmentation algorithms,” Journal of Parallel and Distributed Computing, vol. 63, pp. 387 – 395, 2003.
[47] J.C. Pichel, D.E. Singh, and F.F. Rivera, “Image segmentation based on merging of sub-optimal segmentations,” Pattern Recognition Letters, vol. 27, pp. 1105-1116, 2006.
[48] C. Wang, W.J. Li, L. Ding, J. Tian, and S. Chen, “Image Segmentation Using Spectral Clustering,” in Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence, pp. 677-678, 2005.
[49] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion simulations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 583-598, 1991.
[50] S. Beucher, “The watershed transform applied to image segmentation,” in Proceedings of the Pfefferkorn Conference on Signal and Image Processing in Microscopy and Microanalysis, pp.299-314, 1991.
[51] S.E. Hernandez and K.E. Barner, “Joint region merging criteria for watershed-based image segmentation,” in Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp.108-111, 2000.
[52] F.Y. Hsieh, C.C. Han, N.S. Wu, T.C. Chuang, and K.C. Fan, “A novel approach to the detection of small objects with low contrast,” Signal Processing, vol. 86, pp. 71-83, 2006.
[53] P.D. Smet, R. Luís, and V.P.M. Pires, “Implementation and analysis of an optimized rainfalling watershed algorithm,” in Proceedings of the Science and Technology Conference, Image and Video Communications and Processing, 2000.
[54] C.F. Chin, A.C.C. Shih, and K.C. Fan, “A novel spectral clustering method based on pairwise distance matrix,” submitted.
[55] C.F. Chin, A.C.C. Shih, and K.C. Fan, “Automatic cluster extraction based on the diagonal block-wise structure matrix for spectral clustering,” submitted.
[56] R.C. Gonzalez and R.E. Woods, Digital image processing, 2nd Edition, Prentice Hall, 2002.
[57] P.R. Hill, C.N. Canagarajah, and D.R. Bull, “Image segmentation using a texture gradient based watershed transform,” IEEE Transactions on Image Processing, vol. 12, pp. 1618-1633, 2003.
[58] R.J. O’Callaghan and D.R. Bull, “Combined morphological-spectral unsupervised image segmentation,” IEEE Transactions on Image Processing, vol. 14, pp. 49-62, 2005.
[59] M.R. Barnes and I.C. Gray, eds., “Bioinformatics for Geneticists,” first edition. Wiley, 2003.
[60] T. Chen, H.L. He, and G.M. Church, “Modeling gene expression with differential equations,” Pac. Symp. Biocomput., pp. 29-40, 1999.
[61] T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K. Gerber, N.M. Hannett, C.T. Harbison, C.M. Thompson, and I. Simon, et al., “Transcriptional regulatory networks in Saccharomyces cerevisiae,” Science, vol. 298, pp. 799–804, 2002.
[62] K.C. Chen, T.Y. Wang, H.H. Tseng, C.Y. Huang,C.Y., and C.Y. Kao,C.Y., “A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae,” Bioinformatics, 2005, vol. 21, pp. 2883–2890.
[63] X. Chen, M. Chen, and K. Ning, “BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network,” Bioinformatics, vol. 22, no. 23, pp. 2952−2954, 2006.
[64] A. Raghavan and P.R. Bohjanen, “Microarray-based analyses of mRNA decay in the regulation of mammalian gene expression,” Brief Funct. Genomic Proteomic, vol. 3, no. 2, pp. 112-124, 2004.
[65] A.B. Khodursky and J.A. Bernstein, “Life after transcription--revisiting the fate of messenger RNA,” Trends Genet., vol. 19, no. 3, pp. 113-115, 2003.
[66] J.A. Bernstein, A.B. Khodursky, P.H. Lin, S. Lin-Chao, and S.N. Cohen, “Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays,” Proc. Natl. Acad. Sci. U S A, vol. 99, no. 15, pp. 9697-9702, 2002.
[67] Y. Wang, C.L. Liu, J.D. Storey, R.J. Tibshirani, D. Herschlag, and P.O. Brown, “Precision and functional specificity in mRNA decay” Proc. Natl. Acad. Sci. U S A, vol. 99, no. 9, pp. 5860-5865, 2002.
[68] E. Yang, E. van Nimwegen, M. Zavolan, N. Rajewsky, M. Schroeder, M. Magnasco, and J.E. Jr. Darnell, “Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes”, Genome Res., vol. 13, no. 8, pp. 1863-1872, 2003.
[69] J. Fan, X. Yang, W. Wang, W.H. Wood, 3rd, K.G. Becker, and M. Gorospe, “Global analysis of stress-regulated mRNA turnover by using cDNA arrays,” Proc. Natl. Acad. Sci. U S A, vol.99, no. 16, pp. 10611-10616, 2002.
[70] H.C. Chen, H.C. Lee, T.Y. Lin, W.H. Li, and B.S. Chen, “Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle,” Bioinformatics, vol. 20, no. 12, pp. 1914-1927, 2004.
[71] I. Nachman, A. Regev, and N, Friedman, “2004 Inferring quantitative models of regulatory networks from expression data,” Bioinformatics, vol. 20, suppl. 1, pp. i248-i256, 2004.
[72] R. Sasik, N. Iranfar, T. Hwa, and W.F. Loomis, “Extracting transcriptional events from temporal gene expression patterns during Dictyostelium development,” Bioinformatics, vol.18, no. 1, pp. 61-66, 2002.
[73] R.H. Singer and S. Penman, “Messenger RNA in HeLa cells: kinetics of formation and decay,” J. Mol. Biol., vol. 78, no.2, 1973, pp. 321-334.
[74] M.K. Yeung, J. Tegner, and J.J. Collins, “Reverse engineering gene networks using singular value decomposition and robust regression” Proc. Natl. Acad. Sci. U S A, vol. 99, no. 9, pp. 6163-6168, 2002.
[75] Z. Bar-Joseph, “Analyzing time series gene expression data,” Bioinformatics, vol. 20, no. 16, pp. 2493-2503, 2004.
[76] Z. Bar-Joseph, G.K. Gerber, D.K. Gifford, T.S. Jaakkola, and I. Simon, “Continuous representations of time-series gene expression data,” J. Comput. Biol., vol. 10, no. 3-4, pp. 341-356, 2003.
[77] Y. Luan and H. Li, “Clustering of time-course gene expression data using a mixed-effects model with B-splines,” Bioinformatics, vol. 19, no. 4, pp. 474-482, 2003.
[78] D.F. Rogers, “An Introduction to NURBS: With Historical Perspective” Morgan Kaufmann, 2000.
[79] R.J. Cho, M.J. Campbell, E.A. Winzeler, L. Steinmetz, A. Conway, L. Wodicka, T.G. Wolfsberg, A.E. Gabrielian, D. Landsman, D.J. Lockhart, and R.W. Davis, “A genome-wide transcriptional analysis of the mitotic cell cycle,” Mol. Cell, vol. 2, no. 1, pp. 65-73, 1998.
[80] P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher, “Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization” Mol. Biol. Cell, vol. 9, no. 12, pp. 3273-3297, 1998.
[81] D. Chen, W.M. Toone, J. Mata, R. Lyne, G. Burns, K. Kivinen, A. Brazma, N. Jones, and J. Bahler, “Global transcriptional responses of fission yeast to environmental stress,” Mol. Biol. Cell, vol. 14, no. 1, pp. 214-229, 2003.
[82] K.Y. Yeung, D.R. Haynor, and W.L. Ruzzo, “Validating clustering for gene expression data,” Bioinformatics, vol. 17, no. 4, pp. 309-318, 2001.
[83] M.J. Brauer, A.J. Saldanha, K. Dolinski, and D. Botstein, “Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures,” Mol. Biol. Cell, vol.16, pp. 2503–2517, 2005.
指導教授 范國清(Kuo-Chin Fan) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明