參考文獻 |
1. Davies, J. and Davies, D., Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews: MMBR, 2010. 74(3): p. 417.
2. Neu, H.C., The crisis in antibiotic resistance. Science, 1992. 257(5073): p. 1064-1073.
3. Dewachter, L., Fauvart, M., and Michiels, J., Bacterial heterogeneity and antibiotic survival: Understanding and combatting persistence and heteroresistance. Molecular Cell, 2019. 76(2): p. 255-267.
4. Lidstrom, M.E. and Konopka, M.C., The role of physiological heterogeneity in microbial population behavior. Nature Chemical Biology, 2010. 6(10): p. 705-712.
5. Wang, H.-Y., et al., Rapid detection of heterogeneous vancomycin-intermediate staphylococcus aureus based on matrix-assisted laser desorption ionization time-of-flight: Using a machine learning approach and unbiased validation. Frontiers in Microbiology, 2018. 9: p. 2393.
6. Black, P., et al., Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in mycobacterium tuberculosis isolates. BMC Genomics, 2015. 16(1): p. 1-14.
7. Han, Y. and Zhang, F., Heterogeneity coordinates bacterial multi-gene expression in single cells. PLoS Computational Biology, 2020. 16(1): p. e1007643.
8. Jahn, M., et al., Subpopulation-proteomics in prokaryotic populations. Current Opinion in Biotechnology, 2013. 24(1): p. 79-87.
9. Wang, H.-Y., et al., Application of an optically induced dielectrophoresis (odep)-based microfluidic system for the detection and isolation of bacteria with heterogeneity of antibiotic susceptibility. Sensors and Actuators B: Chemical, 2020. 307: p. 127540.
10. Chu, P.-Y., et al., Utilization of optically induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of viability: Demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of anti-cancer drug resistance gene expression. Sensors and Actuators B: Chemical, 2019. 283: p. 621-631.
11. Kan, A., Machine learning applications in cell image analysis. Immunology and cell biology, 2017. 95(6): p. 525-530.
12. Ramesh, K., et al., A review of medical image segmentation algorithms. EAI Endorsed Transactions on Pervasive Health and Technology, 2021.
13. Taneja, A., Ranjan, P., and Ujjlayan, A. A performance study of image segmentation techniques. in 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions). 2015. IEEE. p. 1-6.
14. Liu, X., Deng, Z., and Yang, Y., Recent progress in semantic image segmentation. Artificial Intelligence Review, 2019. 52(2): p. 1089-1106.
15. Moen, E., et al., Deep learning for cellular image analysis. Nature methods, 2019. 16(12): p. 1233-1246.
16. Yu, H., et al., Phenotypic antimicrobial susceptibility testing with deep learning video microscopy. Analytical Chemistry, 2018. 90(10): p. 6314-6322.
17. Shrivastava, S., Lee, W.-I., and Lee, N.-E., Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosensors and Bioelectronics, 2018. 109: p. 90-97.
18. Hung, J., et al., Keras R-CNN: Library for cell detection in biological images using deep neural networks. BMC Bioinformatics, 2020. 21(1): p. 300.
19. Bradski, G. and Kaehler, A., Learning opencv: Computer vision with the opencv library. 2008: " O′Reilly Media, Inc.".
20. Smith, A.R., Color gamut transform pairs. ACM Siggraph Computer Graphics, 1978. 12(3): p. 12-19.
21. Canny, J., A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(6): p. 679-698.
22. Goodfellow, I.J., et al., Generative adversarial networks. ArXiv Preprint ArXiv:1406.2661, 2014.
23. LeCun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324.
24. Pedregosa, F., et al., Scikit-learn: Machine learning in python. the Journal of Machine Learning Research, 2011. 12: p. 2825-2830.
25. Chawla, N.V., et al., Smote: Synthetic minority over-sampling technique. Journal of artificial intelligence research, 2002. 16: p. 321-357. |