博碩士論文 108522088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.116.28.79
姓名 林姿伶(Zi-Ling Lin)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於光誘導介電泳影像處理檢測流體抗藥性
(Detection of Microfluidic Bacterial Resistance Based on Optically Induced Dielectrophoresis (ODEP) Image Processing)
相關論文
★ 基於質譜儀資料使用機器學習辨識克雷伯氏肺炎桿菌之多重抗藥性★ 結合多種訊號預處理方法於質譜儀資料以辨識細菌對抗生素之抗藥性
★ 利用機器學習預測濁水溪沖積扇區域之地下水位★ 使用表徵學習和機器學習方法於晶圓線切割機台之異常偵測
★ 基於質譜儀資料利用人工智慧方法辨識革蘭氏陰性菌對環丙沙星抗藥性之特徵峰值★ 應用數位分身於馬達軸承之異常偵測
★ 利用機器學習方法基於多類型地層監測資料預測濁水溪沖積扇地區之地層下陷★ 基於人工智慧模型預測抗菌肽的最小抑菌濃度於特定菌株上
★ 使用語言模型嵌入和不平衡調整之深度學習方 法識別多功能抗菌肽★ 使用權重組合模型預測雲林縣地層下陷
★ 基於深度學習從核醣核酸定序表達譜推斷外周血單核細胞之細胞組成
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 一群細菌中存在不同程度的抗生素抗藥性,對抗生素的反應程度不同而導致難以精確施用抗生素。若高強度的抗藥性細菌在抗生素環境下生存,將造成嚴重威脅。因此需要及時提供細菌抗藥性訊息,以降低抗藥性的發生。近年微生物檢驗開始採用基於光學誘導介電泳(Optically Induced Dielectrophoresis, ODEP)的微流體系統,先前研究亦透過該系統對不同微生物或細胞得到不同資訊,該系統能根據細菌具備的極性不同,分離細菌並移動到不同位置。為了找出細菌在流體裡面的所在位置進而快速辨識細菌影片的抗藥性。本研究藉由長庚醫院發明的光誘導介泳系統錄製的大腸桿菌(Escherichia coli)與金黃色葡萄球菌(Staphylococcus aureus)分離影片,使用兩種特徵選取法並基於機器學習從細菌的特徵與分布位置的影片辨認細菌是否抗藥。本研究首先在特徵選取中結合了面積規則與卷積神經網路(Convolutional Neural Network)辨認大腸桿菌與金黃色葡萄球菌的細菌特徵之準確度分別達0.90與1.0,而後將細菌辨認結果與該座標結合轉換成影片資料的特徵,並以羅吉斯回歸(Logistic Regression)分類器所建構之模型,透過留一法交叉(Leave-one-out Cross Validation)驗證辨認細菌影片的細菌抗藥性訓練資料準確率為0.9521。此實驗結果可提供影片中的細菌位置或是提供影片是否抗藥,幫助臨床實驗不同程度的細菌抗藥性相關性,未來可提供醫師更準確的用藥。
摘要(英) There are different levels of antibiotic resistance in a group of bacteria, and the level of response to antibiotics is different, which makes it difficult to accurately administer antibiotics. In recent years, microbiological testing has begun to use optically induced dielectrophoresis-based microfluidic system. The system can separate bacteria and move to different locations according to their polarities. In order to quickly detect the antibiotics resistance of the bacteria in the video through the location of the bacteria in the microfluid. In this study, we used the Escherichia coli and Staphylococcus aureus isolation videos recorded by the optically induced dielectrophoresis system invented by Chang Gung Memorial Hospital to combine two kinds of feature extractions and machine learning to quickly determine whether the video is antibiotics resistant from the distribution and characteristics of bacteria. In feature extraction, this research combines the area rule and convolutional neural network to recognize Escherichia coli and Staphylococcus aureus with accuracy of 0.90 and 1.0 respectively. Then, the bacteria identification results combined with the coordinates are converted as the features of the video data, and the model constructed by logistic regression classifier. The accuracy of identifying bacterial resistance of videos in ODEP data through leave-one-out cross-validation was 0.9521. This study can help clinical trials with varying levels of antibiotics resistance result and provide more appropriate medications, or uses the location of bacteria.
關鍵字(中) ★ 光介電泳
★ 影像辨識
★ 抗生素抗藥性
★ 機器學習
關鍵字(英) ★ optically induced dielectrophoresis
★ image recognition
★ antibiotic resistance
★ machine learning
論文目次 中文摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Related Works 3
1.3 Motivation and Goal 4
Chapter 2 Materials and Methods 5
2.1 Bacterial Isolates 5
2.2 Data Preprocessing 6
2.2.1 Noise Removal 8
2.2.2 Object Images 9
2.2.3 Tracing Path 11
2.3 Feature Extraction 12
2.3.1 Rule-based Method 13
2.3.2 Deep Learning 14
2.4 Machine Learning Models 16
2.5 Evaluation Metrics 17
Chapter 3 Results 19
3.1 The Ground Truth of Image Dataset 19
3.2 Results of Feature Extraction 21
3.2.1 Results of Area Rule-based Method 21
3.2.2 Results of CNN Model 23
3.3 Performance of Models 25
Chapter 4 Discussions and Conclusions 28
4.1 Discussions 28
4.2 Conclusions 29
References 30
Appendix 32
參考文獻 1. Davies, J. and Davies, D., Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews: MMBR, 2010. 74(3): p. 417.
2. Neu, H.C., The crisis in antibiotic resistance. Science, 1992. 257(5073): p. 1064-1073.
3. Dewachter, L., Fauvart, M., and Michiels, J., Bacterial heterogeneity and antibiotic survival: Understanding and combatting persistence and heteroresistance. Molecular Cell, 2019. 76(2): p. 255-267.
4. Lidstrom, M.E. and Konopka, M.C., The role of physiological heterogeneity in microbial population behavior. Nature Chemical Biology, 2010. 6(10): p. 705-712.
5. Wang, H.-Y., et al., Rapid detection of heterogeneous vancomycin-intermediate staphylococcus aureus based on matrix-assisted laser desorption ionization time-of-flight: Using a machine learning approach and unbiased validation. Frontiers in Microbiology, 2018. 9: p. 2393.
6. Black, P., et al., Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in mycobacterium tuberculosis isolates. BMC Genomics, 2015. 16(1): p. 1-14.
7. Han, Y. and Zhang, F., Heterogeneity coordinates bacterial multi-gene expression in single cells. PLoS Computational Biology, 2020. 16(1): p. e1007643.
8. Jahn, M., et al., Subpopulation-proteomics in prokaryotic populations. Current Opinion in Biotechnology, 2013. 24(1): p. 79-87.
9. Wang, H.-Y., et al., Application of an optically induced dielectrophoresis (odep)-based microfluidic system for the detection and isolation of bacteria with heterogeneity of antibiotic susceptibility. Sensors and Actuators B: Chemical, 2020. 307: p. 127540.
10. Chu, P.-Y., et al., Utilization of optically induced dielectrophoresis in a microfluidic system for sorting and isolation of cells with varied degree of viability: Demonstration of the sorting and isolation of drug-treated cancer cells with various degrees of anti-cancer drug resistance gene expression. Sensors and Actuators B: Chemical, 2019. 283: p. 621-631.
11. Kan, A., Machine learning applications in cell image analysis. Immunology and cell biology, 2017. 95(6): p. 525-530.
12. Ramesh, K., et al., A review of medical image segmentation algorithms. EAI Endorsed Transactions on Pervasive Health and Technology, 2021.
13. Taneja, A., Ranjan, P., and Ujjlayan, A. A performance study of image segmentation techniques. in 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and Future Directions). 2015. IEEE. p. 1-6.
14. Liu, X., Deng, Z., and Yang, Y., Recent progress in semantic image segmentation. Artificial Intelligence Review, 2019. 52(2): p. 1089-1106.
15. Moen, E., et al., Deep learning for cellular image analysis. Nature methods, 2019. 16(12): p. 1233-1246.
16. Yu, H., et al., Phenotypic antimicrobial susceptibility testing with deep learning video microscopy. Analytical Chemistry, 2018. 90(10): p. 6314-6322.
17. Shrivastava, S., Lee, W.-I., and Lee, N.-E., Culture-free, highly sensitive, quantitative detection of bacteria from minimally processed samples using fluorescence imaging by smartphone. Biosensors and Bioelectronics, 2018. 109: p. 90-97.
18. Hung, J., et al., Keras R-CNN: Library for cell detection in biological images using deep neural networks. BMC Bioinformatics, 2020. 21(1): p. 300.
19. Bradski, G. and Kaehler, A., Learning opencv: Computer vision with the opencv library. 2008: " O′Reilly Media, Inc.".
20. Smith, A.R., Color gamut transform pairs. ACM Siggraph Computer Graphics, 1978. 12(3): p. 12-19.
21. Canny, J., A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(6): p. 679-698.
22. Goodfellow, I.J., et al., Generative adversarial networks. ArXiv Preprint ArXiv:1406.2661, 2014.
23. LeCun, Y., et al., Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998. 86(11): p. 2278-2324.
24. Pedregosa, F., et al., Scikit-learn: Machine learning in python. the Journal of Machine Learning Research, 2011. 12: p. 2825-2830.
25. Chawla, N.V., et al., Smote: Synthetic minority over-sampling technique. Journal of artificial intelligence research, 2002. 16: p. 321-357.
指導教授 洪炯宗 吳立青(Jorng-Tzong Horng Li-Ching Wu) 審核日期 2021-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明