博碩士論文 108521115 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.133.135.8
姓名 儲健峰(Chien-Feng Chu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於AI技術之對抗部分遮蔽的即時臉部辨識系統
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在使用深度學習技術並結合追蹤演算法,實現一套對抗部分遮蔽的即時臉部辨識系統。儘管臉部受到部分遮蔽,如:口罩、帽子、墨鏡,我們提出的系統還是能夠順利的進行辨識,並可運行在即時影像與離線影像上。進行臉部辨識之前,僅需藉由註冊系統完成身分註冊後,系統可以立即辨識,無須重新訓練。系統在辨識的同時,會記錄該身分進入、離開畫面的時間點,方便使用者用於影像搜索、紀錄等場景。
目前遮蔽的臉部辨識面臨以下幾個問題,首先對於未學習過的臉部遮蔽情況,會影響網路辨識的準確性。或是僅適用於正臉,對於不同角度的人臉,其準確性也會大幅下降。再者,也有文獻提出使用臉部修復的方法,但該方法需要大量的當地人臉做為訓練資料集,以修復被遮蔽的臉部區塊,但亞洲人臉的資料集相較於歐美人臉少非常多,可能會導致亞洲人臉還原後,具有歐美人臉特徵。
一般人們辨識對方,對方人臉若有受到遮蔽之情況下,普遍會更關注臉部未被遮蔽的區塊。本論文就以此觀點進行研究,在網路中加入注意力機制模塊,以改良人臉辨識網路模型SeesawFaceNet的骨幹架構,並在訓練時使用遮蔽模塊,對訓練資料進行擴增,使得網路對部分遮蔽的人臉擷取特徵時,自動關注未遮蔽的臉部區域,加強擷取未遮蔽特徵,藉此減少遮蔽物對特徵的影響。並且避免原先需要大量亞洲人臉資料集,以及改善不同角度的遮蔽人臉辨識問題,使系統對於不同的遮蔽情況,能夠達到更好的辨識準確性。
摘要(英) This thesis attempts to use deep learning technology combining tracking algorithm to implement a real-time system to recognize a person whose face is partially covered. Although the face is partially covered by a mask, hat or sunglasses, the system can still accurately recognize the face of a person in real time or offline video. To perform facial recognition, we should use the enrollment system to complete the identity enrollment, and the system can recognize the enrolled person immediately without retraining even his/her face is partially covered by something. At the same time, the system will record the time points when the enrolled person enters or leaves the screen. This function is very convenient to be used to search a specific person in a long video.
The partially covered facial recognition has some problems to be overcome. One is if there is no learning about all covered face cases, it is hard to have an accurate recognition result. The other is the covered face should be the exactly front face, otherwise the recognition accuracy will be reduced. Furthermore, some studies used facial repair method to recover the covered part of the face, but it needs a lot of local people’s faces as training data for training. However, the data set of Asian faces is much less than that of European and American faces, which may cause Asian faces having European and American facial features after face repair.
It is known that when people recognize a partially covered face, they usually pay more attention to the uncovered areas of the face. This thesis studies from this point of view and adds the attention mechanism to the network model to improve the backbone architecture of the face recognition network SeesawFaceNet. During the training process, let the covered block be used to augment the training data set. When the network extracts feature of the partially covered faces, it will automatically focus on the uncovered face areas, and strengthen the extraction of the uncovered features to mitigate the impact of feature reduction. Two more contributions of this study are that we do not need a large data set of Asian faces, and can recognize the partially covered faces with different angles.
關鍵字(中) ★ 深度學習
★ 物件追蹤
★ 臉部偵測
★ 臉部辨識
★ 臉部遮蔽
★ 注意力機制
關鍵字(英) ★ deep learning
★ object tracking
★ face detection
★ face recognition
★ partially covered faces
★ attention mechanism
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 1
1.3 論文目標 4
1.4 論文架構 4
第二章 系統架構與軟硬體介紹 5
2.1 系統架構 5
2.2 硬體介紹 7
2.2.1 電腦設備介紹 7
2.2.2 攝影機介紹 8
2.3 軟體介紹 8
第三章 主要網路架構及演算法 10
3.1 臉部偵測 10
3.1.1 網路架構 10
3.1.2 無錨框之物件偵測 16
3.1.3 矩形框回歸損失函數 18
3.1.4 臉部特徵點回歸損失函數 19
3.1.5 臉部對齊 20
3.2 部分遮蔽之臉部特徵擷取 20
3.2.1 網路架構 21
3.2.2 訓練損失函數 25
3.3 臉部追蹤演算法 29
3.3.1 匹配級聯 29
3.3.2 卡爾曼濾波器 31
3.3.3 辨識失敗問題改善 32
3.4 身分匹配演算法 32
第四章 網路訓練與資料集擴增 34
4.1 臉部偵測網路之訓練資料集 34
4.2 臉部特徵擷取網路之訓練資料集 38
第五章 圖形使用者介面設計與介紹 39
5.1 即時註冊系統 39
5.2 相片註冊系統 42
5.3 即時與離線辨識系統 43
第六章 實驗結果 45
6.1 臉部偵測實驗結果 45
6.2 抗遮蔽臉部特徵擷取實驗結果 48
6.3 臉部追蹤實驗結果 56
6.4 臉部辨識系統實驗結果 57
第七章 結論與未來展望 59
7.1 結論 59
7.2 未來展望 59
參考文獻 61
參考文獻 [1] (2018年, 7月). AI/感測關鍵技術助陣 [Online]. Available: https://www.2cm.com.tw/2cm/zhtw/market/39CF0BA42294406F8EE77337CF67FBB5
[2] (2017年, 11月). An On-device Deep Neural Network for Face Detection [Online]. Available: https://machinelearning.apple.com/research/face-detection
[3] (2019年, 11月). 經濟部國際合作處 [Online]. Available: https://www.moea.gov.tw/mns/ietc/bulletin/Bulletin.aspx?kind=30&html=1&menu_id=17130&bull_id=6536
[4] P. Hu and D. Ramanan, "Finding tiny faces," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 951-959.
[5] M. Najibi, P. Samangouei, R. Chellappa, and L. S. Davis, "Ssh: Single stage headless face detector," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 4875-4884.
[6] X. Tang, D. K. Du, Z. He, and J. Liu, "Pyramidbox: A context-assisted single shot face detector," in Proceedings of the European Conference on Computer Vision, 2018, pp. 797-813.
[7] S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, and S. Z. Li, "S3fd: Single shot scale-invariant face detector," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 192-201.
[8] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, "Retinaface: Single-stage dense face localisation in the wild," arXiv preprint arXiv:1905.00641, 2019.
[9] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, "Joint face detection and alignment using multitask cascaded convolutional networks," IEEE Signal Processing Letters, vol. 23, pp. 1499-1503, 2016.
[10] Y. He, D. Xu, L. Wu, M. Jian, S. Xiang, and C. Pan, "LFFD: A light and fast face detector for edge devices," arXiv preprint arXiv:1904.10633, 2019.
[11] Y. Xu, W. Yan, G. Yang, J. Luo, T. Li, and J. He, "CenterFace: joint face detection and alignment using face as point," arXiv preprint arXiv:1911.03599, 2019.
[12] K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, "Centernet: Keypoint triplets for object detection," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6569-6578.
[13] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, "Generalized intersection over union: A metric and a loss for bounding box regression," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 658-666.
[14] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, "Distance-IoU loss: Faster and better learning for bounding box regression," in Proceedings of the AAAI Conference on Artificial Intelligence, 2020, pp. 12993-13000.
[15] Z.-H. Feng, J. Kittler, M. Awais, P. Huber, and X.-J. Wu, "Wing loss for robust facial landmark localisation with convolutional neural networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 2235-2245.
[16] J. Yang, D. Zhang, A. F. Frangi, and J.-y. Yang, "Two-dimensional PCA: a new approach to appearance-based face representation and recognition," IEEE transactions on pattern analysis and machine intelligence, vol. 26, pp. 131-137, 2004.
[17] F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified embedding for face recognition and clustering," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 815-823.
[18] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, "Sphereface: Deep hypersphere embedding for face recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 212-220.
[19] H. Wang et al., "Cosface: Large margin cosine loss for deep face recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 5265-5274.
[20] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, "Arcface: Additive angular margin loss for deep face recognition," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 4690-4699.
[21] Y. Huang et al., "Curricularface: adaptive curriculum learning loss for deep face recognition," in proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 5901-5910.
[22] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, "KNN model-based approach in classification," in OTM Confederated International Conferences, 2003, pp. 986-996.
[23] D. S. Trigueros, L. Meng, and M. Hartnett, "Enhancing convolutional neural networks for face recognition with occlusion maps and batch triplet loss," Image and Vision Computing, vol. 79, pp. 99-108, 2018.
[24] E. Osherov and M. Lindenbaum, "Increasing cnn robustness to occlusions by reducing filter support," in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 550-561.
[25] F. Cen and G. Wang, "Dictionary representation of deep features for occlusion-robust face recognition," IEEE Access, vol. 7, pp. 26595-26605, 2019.
[26] S. Ge, C. Li, S. Zhao, and D. Zeng, "Occluded face recognition in the wild by identity-diversity inpainting," IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, pp. 3387-3397, 2020.
[27] A. Howard et al., "Searching for mobilenetv3," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314-1324.
[28] A. G. Howard et al., "Mobilenets: Efficient convolutional neural networks for mobile vision applications," arXiv preprint arXiv:1704.04861, 2017.
[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 4510-4520.
[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, "Focal loss for dense object detection," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980-2988.
[31] J. Zhang, "SeesawFaceNets: sparse and robust face verification model for mobile platform," arXiv preprint arXiv:1908.09124, 2019.
[32] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification," in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034.
[33] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, "Cbam: Convolutional block attention module," in Proceedings of the European conference on computer vision, 2018, pp. 3-19.
[34] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple online and realtime tracking," in Proceedings of the IEEE conference on image processing, 2016, pp. 3464-3468.
[35] R. Kalman, "A new approach to linear filtering and prediction problems," Journal of Basic Engineering, vol. 82, pp. 35-45, 1960.
[36] S. Yang, P. Luo, C.-C. Loy, and X. Tang, "Wider face: A face detection benchmark," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 5525-5533.
[37] Face Mask Detection Dataset. https://makeml.app/datasets/mask
[38] X. An et al., "Partial FC: Training 10 Million Identities on a Single Machine," arXiv preprint arXiv:2010.05222, 2020.
[39] I. K. Shlizerman, S. M. Seitz, D. Miller, and E. Brossard, "The megaface benchmark: 1 million faces for recognition at scale," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4873-4882.
[40] N. Boyko, O. Basystiuk, and N. Shakhovska, "Performance evaluation and comparison of software for face recognition, based on dlib and opencv library," in Proceedings of the IEEE Second International Conference on Data Stream Mining & Processing, 2018, pp. 478-482.
[41] D. Yi, Z. Lei, S. Liao, and S. Z. Li. "Learning face representation from scratch," arXiv preprint arXiv:1411.7923, 2014
[42] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, "Labeled faces in the wild: A database forstudying face recognition in unconstrained environments," in Workshop on faces in′Real-Life′Images: detection, alignment, and recognition, 2008.
[43] S. Sengupta, J.C. Chen, C. Castillo, V. M. Patel, R. Chellappa, and D. W. Jacobs, "Frontal to profile face verification in the wild," in Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2016, pp. 1-9.
[44] S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and S. Zafeiriou, "Agedb: the first manually collected, in-the-wild age database," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017, pp. 51-59.
[45] B. Maze et al., "Iarpa janus benchmark-c: Face dataset and protocol," in International Conference on Biometrics, 2018, pp. 158-165.
指導教授 王文俊(Wen-June Wang) 審核日期 2021-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明