參考文獻 |
[1] P. Choi, D. A. Antoniadis, and E. A. Fitzgerald, “Towards Millimeter-Wave Phased Array Circuits and Systems For Small Form Factor and Power Efficient 5G Mobile Devices,” IEEE International Symposium on Phased Array System & Technology , 05 March 2020.
[2] Gholamreza Askari1, Mahmoud Kamarei, and Maziar Hedayati, “UWB Sixport Aanalysis and Design in mm-Wave for 5G Applications” IEEE Progress In Electromagnetics Research Symposium - Spring , 18 January 2018.
[3] H. Wang, K.-Y. Lin, Z.-M. Tsai, L.-H. Lu, H.-C. Lu, C.-H. Wang, J.-H. Tsai, T.-W. Huang, and Y.-C. Lin, “MMICs in the millimeter-wave regime,” IEEE Microw. Magazine, vol.1, pp. 99–117, Jan. 2009.
[4] Enhancements for Very High Throughput in the 60 GHz Band, IEEE Standard 802.11ad, 2012.
[5] Y.-C. Liu, H.-Y. Chang, S.-Y. Huang, and K. Chen, “Design and analysis of CMOS high speed high dynamic range track-and-hold amplifiers,” IEEE Trans. Microw. Theory & Techn., vol. 63, no. 09, pp. 2841–2853, Sept. 2015.
[6] S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 659–661, Oct. 2009.
[7] Y.-H., Lin, J.-H. Tsai, Y.-H. Kuo, and T.-W. Huang, “An ultra low-power 24 GHz phase-lock-loop with low phase-noise VCO embedded in 0.18 μm CMOS process,” 2011 Asia Pacific Microw. Conf. Proc., Dec. 2011, pp. 1630–1633.
[8] M. Huang, C.-H. Yu, J.-H. Tsai, and T.-W. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 µm COMS technology,” 2012 Asia Pacific Microw. Conf. Proc., Dec. 2012, pp. 643–645.
[9] A. Li, S. Zheng, J. Yin, X. Luo, and H. C. Luong, “A 21–48 GHz subharmonic injection-locked fractional-N frequency synthesizer for multiband point-to-point backhaul communications,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1785–1799, Aug. 2014.
[10] G.-Y. Chen, H.-Y. Chang, S.-H. Weng, C.-C. Shen, Y.-L. Yeh, J.-S. Fu, and Y.-M. Hsin, “Design and analysis of a Ka-band monolithic high-efficiency frequency quadrupler using GaAs HBT–HEMT common-base/common-source balanced topology”, IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3674–3689, Oct. 2013.
[11] K.-Y. Lin, J.-Y. Huang, and S.-C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 308–310, May 2009.
[12] J. Zhang, M. Bao, D. Kuylenstierna, S. Lai, and H. Zirath, “Broadband Gm-boosted differential HBT doublers with transformer balun,” IEEE Trans. Microw. Theory Techn. , vol. 59, no. 11, pp. 2953–2960, Nov. 2011.
[13] Y. Chen, Y. Pei, D. M. W. and Leenaerts, “A dual-band LO generation system using a 40GHz VCO with a phase noise of -106.8 dBc/Hz at 1-MHz,” in 2013 IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2013, pp. 203–206.
[14] Y.-L. Yeh and H.-Y. Chang, “A W-band wide locking range and low dc power injection-locked frequency tripler using transformer coupled technique,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 860–870, Feb. 2013.
[15] Wei Deng, Zheng Song, Ruichang Ma, Jianfu Lin, Yutian Li, Jialiang Ye,Shangcheng Kong, Sanming Hu , Haikun Jia and Baoyong Chi, “An energy-efficient 10-Gb/s CMOS millimeter-wave transceiver with direct-modulation digital transmitter and I/Q phase-coupled frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 55, no. 8, pp. 2027-2040, Aug. 2020.
[16] S. Huang Shuigen, M. Lin, R. Wang, Z. Chen, and Y. Dong, “A 400MHz single-chip CMOS transceiver for long range high definition video transmission in UAV application,” Chinese Journal of Electronics vol.29, No.3, pp. 554-562, May 2020.
[17] Yun Wang, Rui Wu, Jian Pang, Dongwon You, Ashbir Aviat Fadila, Rattanan Saengchan, Xi Fu, Daiki Matsumoto, Takeshi Nakamura, Ryo Kubozoe, Masaru Kawabuchi, Bangan Liu, Haosheng Zhang, Junjun Qiu, Hanli Liu, Naoki Oshima, Keiichi Motoi, Shinichi Hori, Kazuaki Kunihiro, Tomoya Kaneko, Atsushi Shirane, and Kenichi Okada “A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 55, no. 5, pp. 1249-1268, May 2020.
[18] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[19] Akshay Visweswaran, Robert Bogdan Staszewski, and John R. Long, “A Low Phase Noise Oscillator Principled on Transformer-Coupled Hard Limiting,” IEEE J. Solid-State Circuits, vol. 49, no. 2, pp. 300–311, Feb. 2014
[20] C.-H. Lin, Y.-Ta Lu, H.-Y. Liao, S. Chen, Alvin L. S. Loke, and T.-J. Yeh” A 0.011-mm2 27.5-GHz VCO with Transformer-Coupled Bandpass Filter Achieving -191 dBc/Hz FoM in 16-nm FinFET CMOS ,” IEEE IMS ,August 2020.
[21] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
[22] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-µm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.
[23] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “Superharmonic injection-locked frequency dividers,” IEEE ICCSC 2008, pp. 812–815.
[24] Z. Deng and A. M. Niknejad, “The speed-power trade-off in the design of CMOS true-single-phase-clock dividers,” IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2457–2465, Nov. 2010.
[25] M. Soyuer and R. G. Meyer, “Frequency limitations of a conventional phase-frequency detector,” IEEE J. Solid-State Circuits, vol. 25, no. 4, pp. 1019–1022, Aug. 1990.
[26] 林紀賢,注入鎖定非線性單晶微波積體電路之研究,國立中央大學電機工程研究所博士論文,民國 101 年。
[27] B.-Y. Lin, and S.-I. Liu, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 10, pp. 617–621, Oct. 2011.
[28] K. Tsutsumi et al., “Low phase noise Ku-band PLL-IC with -104.5 dBc/Hz at 10- kHz offset using SiGe HBT ECL PFD,” in Proc. Asia–Pacific Microw. Conf., pp. 373–376, Dec. 2009.
[29] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117–121, Feb. 2009.
[30] Jeng-Han Tsai, Chia-Hsiang Chao, and Hung-Da Shih, “A X-band Fully Integrated CMOS Frequency Synthesizer,” in Proc. Asia-Pacific Microw. Con., Dec. 2012.
[31] 呂冠學,微波及毫米波倍頻器、多相位高功率高效率壓控振盪器及鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國 105 年。
[32] J.F Huang, “Chip Design of 10 GHz Low Phase Noise and Small Chip Area PLL,” IEEE Communications and Networking in China (CHINACOM), pp. 276–280, Aug. 2013.
[33] S.-Y. Yang, W.-Z. Chen, and T.-Y. Lu, “A 7.1 mw, 10 GHz all digital frequency systhesizer with dynamically reconfigured digital loop filter in 90 nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 578–586, Mar. 2010.
[34] Jeng-Han Tsai, Chin-Yi Hsu, and Chia-Hsiang Chao, “An X-Band 9.75/10.6 GHz Low-Power Phase-Locked Loop using 0.18-μm CMOS Technology,” Proceedings of the 10th European Microwave Integrated Circuits Conference, Sept. 2015.
[35] Keum-Won Ha, Jeong-Yun Lee, Sangyong Park, and Donghyun Baek, “A Dual-mode Signal Generator using PLL for X-band Radar Sensor Applications,” IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sept. 2017.
[36] Hamed Alsuraisry, Chun-Hin Yim, Jen-Hao Cheng, Jeng-Han Tsai, Tian-Wei Huang, “A X-band frequency synthesizer for FMCW radar in 180-nm CMOS,” in Proc. Asia-Pacific Microw. Con., Dec. 2015.
[37] F. Liang and K. J. Hsiao, “An injection locked ring PLL with self aligned injection window,” in IEEE Int. Solid State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 90-92.
[38] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[39] B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection locked oscillator with a highly digital tuning Loop,” IEEE J. Solid State Circuits, vol. 44, pp. 1391-1400, May 2009.
[40] I T. Lee, Y. J. Chen, S. I. Liu, C. P. Jou, F. L. Hsueh, and H. H. Hsieh, “A divider less sub-harmonically injection-locked PLL with self-adjusted injection timing” IEEE Int. Solid State Circuits Conf, Tech. Dig., pp. 414-415, Feb. 2013.
[41] Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[42] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage-controlled oscillator with FLL self-alignment technique,” in IEEE MTT S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1-4.
[43] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所碩士論文,民國104年。
[44] 高曜煌,射頻鎖相迴路 IC 設計,第二章,滄海書局,民國 94 年。
[45] Sonnet Software Inc., Sonnet User’s Manual, Release 13, North Syracuse, NY, Jun. 2011.
[46] D. Dunwell and A. C. Carusone, “Modeling oscillator injection locking using the phase domain response,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 2823–2833, Nov. 2013.
[47] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback,” 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100–103.
[48] Y.-L. Yeh, S.-Y. Huang, Y.-E. Shen, and H.-Y. Chang, “A 90 nm CMOS low phase noise sub-harmonically injection-locked voltage- ontrolled oscillator with FLL self-alignment technique,” in IEEE MTT-S Int. Microw. Symp. Dig., San Francisco, CA, USA, May 2016, pp. 1–4.
[49] H.-Y. Chang, C.-C. Chan, I. Y.-E. Shen, Y.-L. Yeh, S.-Y. Huang, "Design and Analysis of CMOS Low-Phase-Noise Low-Jitter Subharmonically Injection-Locked VCO With FLL Self-Alignment Technique", IEEE Trans. Microw. Theory Techn., vol. 64, pp. 4632–4645, 2016.
[50] H.-Y. Chang, C.-C. Chan, S.-M. Li, H.-N. Yeh, I. Y.-E. Shen, and G.-L. Huang, “Design and analysis of CMOS low phase noise low quadrature error V-band sub-harmonically injection-locked quadrature FLL,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 06, pp. 2851–2866, June 2018.
[51] D. Shin, S. Raman and K. J. Koh, “A mixed-mode injection frequency-locked loop for self-calibration of injection locking range and phase noise in 0.13μm CMOS,” 2016 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2016, pp. 50–51.
[52] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee and J. Choi, “A PVT-robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequency-tracking loop using the averages of phase deviations for mm-band 5G transceivers,” 2017 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 324–325.
[53] H.-S. Yang, I. Y.-E. Shen, and H.-Y. Chang, “A K-band CMOS low-phase-noise sub-harmonically injection-locked QVCO with divider-less frequency-tracking loop,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, USA, June 2019, pp. 2–7.
[54] J. Zhang, Y. Peng, H. Liu, Yunqiu, C. Zhao and K. Kang “A 21.7-to-41.7-GHz injection-locked LO generation with a narrowband low-frequency input for multiband 5G communications,” IEEE Trans. Microw. Theory Techn., Early Access Article, 2019.
[55] 李哲瑋,CMOS多相位鎖相迴路與低相位雜訊低抖動次諧波注入鎖定四相位鎖頻迴路,國立中央大學電機工程研究所碩士論文,民國109年。
[56] Xuqiang Zheng, Fangxu Lv, Lei Zhou, Danyu Wu, Jin Wu, Chun Zhang, Woogeun Rhee and Xinyu Liu, “Frequency-Domain Modeling and Analysis of Injection-Locked Oscillators,” IEEE J. Solid-State Circuits, vol. 55, no. 6, pp.1651-1664, June. 2020.
[57] 李昇洺,V及D頻段高除頻數注入鎖定除頻器與四相位鎖頻迴路之研製,國立中央大學電機工程研究所碩士論文,民國106年。
[58] S. Yoo, S. Choi, J. Kim, H. Yoon, Y. Lee and J. Choi, “19.2 A PVT robust −39dBc 1kHz-to-100MHz integrated-phase-noise 29GHz injection-locked frequency multiplier with a 600µW frequencytracking loop using the averages of phase deviations for mm-band 5G transceivers,” 2017 IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, 2017, pp. 324-325.
[59] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, Y.-C. Tsai, and C.-H. Chen, “An ultra compact and broadband 15–75 GHz BPSK modulator using 0.13-µm CMOS process,” in IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA, Jun. 2005, pp. 41–44.
[60] D. Shin, S. Park, S. Raman and K. J. Koh, “A subharmonically injection-locked PLL with 130 fs RMS jitter at 24 GHz using synchronous reference pulse injection from nonlinear VCO envelope feedback, " 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 100-103.
[61] C. Azcona, B. Calvo, S. Celma, N. Medrano” Low-Voltage Low-Power CMOS Rail-to-Rail V-I Converters” in European Conference on Circuit Theory and Design (ECCTD),2011
[62] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. J. Chern, “Design and analysis of CMOS broadband compact high-linearity modulators for gigabit microwave/millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 1, pp.20–30, Jan. 2006.
[63] P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui, and H. Wang, “A 30–65 GHz reduced-size modulator with low LO power using sub- harmonic pumping in 90-nm CMOS technology,” in Proc. RFIC Symp., Jun. 2012, pp. 491–494.
[64] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “1024- QAM high image rejection E-band sub-harmonic IQ modulator and transmitter in 65-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974–3985, Nov. 2013.
[65] C. Chen, J. Lin and H. Wang, “A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer,“ in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822- 824, Sept. 2018.
[66] T. Tang, C. Chen, H. Lin, J. Lin and H. Wang” A 38-GHz Sub-Harmonic I/Q Modulator Using LO Frequency Quadrupler in 65-nm CMOS” in IEEE Asia-Pacific Microwave Conference, pp. 723- 725, Dec. 2019 |