博碩士論文 108521107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:3.138.170.21
姓名 陳易(Yi Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於機器學習之冰機設備運轉參數優化系統
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要針對冰水主機設備(冰機),對其進行能耗分析與設備運轉參數調整之建議。由於能耗分析涉及許多參數(如冰水入水溫、冷卻水入水溫等),需要先建立能耗預測模型以方便日常效率監控及未來運轉參數優化之依據。本研究首先透過感測器接收冰機運轉參數,利用資料探勘分析技術,針對每台冰機的資料進行如離群值濾除與分層隨機抽樣等資料預處理流程,再透過貝葉斯最佳化方法以較快速度搜尋最佳建模參數,當中透過交叉驗證增加訓練模型的資料比例,同時更準確地挑選出誤差較小之冰機能耗預測模型。本研究比較了幾種機器學習與深度學習模型在預測冰機效率時的準確度,計算其SHAP值(Shapley Additive exPlanations)值得到不同輸入特徵對輸出的影響程度,依此影響程度對特徵進行重要性排序。在冰機運轉參數優化階段,以Z分數和平均值差異比較來檢測冰機運轉效率之優劣。透過KNN(K-Nearest Neighbors)找出可能與過去相似之運轉參數,再透過X-means分群,建立資料效率優化之調整基線。後續設計一貪婪演算法(greedy algorithm)調整冰機參數來擬合冰機實際效率,找出影響運轉參數與設備能耗之關聯。加上雲端大數據建立決策樹分析,找出冰機運轉參數區間與效率之關係,以此建立冰機診斷系統,提供使用者改善冰機能耗之參數調整方向。在實驗結果中,本系統在經過簡單的初期參數設置後,即可自動對不同場域冰機進行效率優化調整建議。本研究所設計之使用者介面,可以方便使用者修改建模參數與連接資料庫等設定,並視覺化查看冰機效率分析結果、運轉特徵對輸出之影響力、系統所分析之參數改善建議和預期改善曲線等。此外也可以使用不同時段之資料,及使用者所希望之分析參數,重新更改建模方式,來調整使用者希望之不同分析方法。
摘要(英) This paper presents a chiller diagnosis system to analyze the energy consumption of the chiller and proposes the parameter adjustment strategy for chiller operation to improve its efficiency.Since energy consumption analysis involves many parameters (such as chilled water return temperature, cooling tower water temperature, etc.), the chiller model will be built for daily monitoring, fault detection, and diagnosis. In the beginning, the outliers in the raw data derived from sensors are removed, and then training and testing sets are split by stratified random sampling during data preprocessing step. This study compares the accuracy of several machine learning models and neural network. We apply Bayesian optimization and cross-validation techniques while training the model to find the best model hyperparameters quickly and impartially. The cross-validation can improve the prediction accuracy of the model since it can utilize more data to train the model. The input features of a chiller can be ranked by SHAP values according to their contribution to the model prediction after the model has been trained.In order to know whether the chiller system is operating at an efficient condition, the z-score and mean value difference between real-time efficiency and model prediction are employed as the criteria to judge the efficiency difference. In the diagnosis module, a baseline of operation parameters adjustment will be built first by KNN and X-means. After that, a greedy algorithm is applied to find the relationship between parameters and operation faults. The diagnosis module will further consider the analysis result of big data decision tree to find the efficiency difference among different chillers. The result shows that the system can automatically recommend parameter adjustment strategies for different chillers after a simple initial setting. The system allows users to modify many options, such as modeling options and SQL connection settings. Also, users can use the GUI to check the efficiency analysis results, features influence, recommend parameters adjustment strategy, and expected efficiency curve before and after optimization. Furthermore, users can retrain the model based on the analysis methods they want by using different period data and desired parameter settings.
關鍵字(中) ★ 冰水主機
★ 機器學習
★ 節能
★ 資料探勘
★ 故障檢測與診斷
關鍵字(英) ★ Chiller
★ Machine learning
★ Energy saving
★ Data mining
★ Fault detection and diagnosis (FDD)
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1. 研究背景與動機 1
1.2. 文獻回顧 1
1.3. 研究目標 5
1.4. 論文架構 5
第二章 設備軟硬體介紹 6
2.1. 冰機簡介 6
2.2. 系統硬體介紹 8
2.3. 系統軟體介紹 9
第三章 研究方法與演算法 13
3.1. 整合學習 13
3.2. 資料前處理 14
3.2.1. 填補遺失值 14
3.2.2. 分層隨機抽樣 14
3.2.3. 資料正規化 15
3.2.4. 四分位距離群值檢測 16
3.2.5. Loda 17
3.2.6. CBLOF 18
3.2.7. COPOD 19
3.3. 冰機建模 20
3.3.1. SVR 20
3.3.2. KNR 22
3.3.3. Decision tree 22
3.3.4. XGBoost 24
3.3.5. LGBM 26
3.3.6. 倒傳遞神經網路 27
3.3.7. K折交叉驗證 29
3.3.8. 網格搜尋 30
3.3.9. 貝葉斯最佳化 30
3.4. 冰機運轉分析 33
3.4.1. SHAP 33
3.4.2. 相依樣本t檢定 34
3.4.3. K-means 36
3.4.4. X-means 36
3.4.5. 貪婪演算法 38
第四章 系統架構與功能 41
4.1. 本地場域系統 42
4.2. 雲端系統 47
第五章 實驗結果 49
5.1. 濾除離群值 49
5.2. 分層隨機抽樣 53
5.3. 冰機模型 54
5.4. 交叉驗證 55
5.5. 建模超參數最佳化 56
5.6. 建模特徵選擇 57
5.7. 冰機效率優化 58
第六章 結論與未來展望 63
6.1. 結論 63
6.2. 未來展望 64
參考文獻 65
研究成果 70
參考文獻 [1] 台灣電力股份有限公司,「歷年發購電量及結構」,引見於5月24,2021. [線上]. Available: https://reurl.cc/ar52bD
[2] N. Paulauskas and A. Baskys, “Application of Histogram-Based Outlier Scores to Detect Computer Network Anomalies,” Electronics, vol. 8, p. 1251, Nov. 2019.
[3] H. Ye, H. Kitagawa, and J. Xiao, “Continuous Angle-based Outlier Detection on High-dimensional Data Streams,” in 19th International Database Engineering & Applications Symposium, New York, NY, USA, Jul. 2015, pp. 162–167.
[4] I. Ullah, H. Hussain, I. Ali, and A. Liaquat, “Churn Prediction in Banking System Using K-means, LOF, and CBLOF,” in 2019 International Conference on Electrical, Communication, and Computer Engineering, Jul. 2019, pp. 1–6.
[5] A. Likas, N. Vlassis, and J. J. Verbeek, “The Global K-means Clustering Algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.
[6] Z. He, X. Xu, and S. Deng, “Discovering Cluster-Based Local Outliers,” Pattern Recognition Letters, vol. 24, no. 9, pp. 1641–1650, Jun. 2003.
[7] Z. Cheng, C. Zou, and J. Dong, “Outlier Detection Using Isolation Forest and Local Outlier Factor,” in Conference on Research in Adaptive and Convergent Systems, New York, NY, USA, Sep. 2019, pp. 161–168.
[8] Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “COPOD: Copula-Based Outlier Detection,” arXiv:2009.09463 [cs, stat], Sep. 2020.
[9] T. T. Dang, H. Y. T. Ngan, and W. Liu, “Distance-Based K-Nearest Neighbors Outlier Detection Method in Large-Scale Traffic Data,” in 2015 IEEE International Conference on Digital Signal Processing, Jul. 2015, pp. 507–510.
[10] Y. Chen, D. Miao, and H. Zhang, “Neighborhood Outlier Detection,” Expert Systems with Applications, vol. 37, no. 12, pp. 8745–8749, Dec. 2010.
[11] H. Wang, M. J. Bah, and M. Hammad, “Progress in Outlier Detection Techniques: A Survey,” IEEE Access, vol. 7, pp. 107964–108000, 2019.
[12] Y. Hu, H. Chen, G. Li, H. Li, R. Xu, and J. Li, “A Statistical Training Data Cleaning Strategy for the PCA-Based Chiller Sensor Fault Detection, Diagnosis and Data Reconstruction Method,” Energy and Buildings, vol. 112, pp. 270–278, Jan. 2016.
[13] F. W. Yu, W. T. Ho, K. T. Chan, and R. K. Y. Sit, “Critique of Operating Variables Importance on Chiller Energy Performance Using Random Forest,” Energy and Buildings, vol. 139, pp. 653–663, 2017.
[14] O. Renaud and M. P. Victoria-Feser, “A Robust Coefficient of Determination for Regression,” Journal of Statistical Planning and Inference, vol. 140, no. 7, pp. 1852–1862, 2010.
[15] Y. Fan, X. Cui, H. Han, and H. Lu, “Feasibility and Improvement of Fault Detection and Diagnosis Based On Factory-Installed Sensors for Chillers,” Applied Thermal Engineering, vol. 164, p. 114506, Jan. 2020.
[16] S. Arlot and A. Celisse, “A Survey of Cross-Validation Procedures for Model Selection,” Statistics surveys, vol. 4, pp. 40–79, 2010.
[17] W. S. Noble, “What Is a Support Vector Machine?,” Nature biotechnology, vol. 24, no. 12, pp. 1565–1567, 2006.
[18] H. Han, B. Gu, J. Kang, and Z. R. Li, “Study on a Hybrid SVM Model for Chiller FDD Applications,” Applied Thermal Engineering, vol. 31, no. 4, pp. 582–592, Mar. 2011.
[19] C.-F. Chien et al., “AI and Big Data Analytics for Wafer Fab Energy Saving and Chiller Optimization to Empower Intelligent Manufacturing,” in 2018 e-Manufacturing Design Collaboration Symposium, Sep. 2018, pp. 1–4.
[20] S. Zhang, X. Zhu, B. Anduv, X. Jin, and Z. Du, “Fault Detection and Diagnosis for the Screw Chillers Using Multi-Region XGBoost Model,” Science and Technology for the Built Environment, vol. 27, no. 5, pp. 608–623, May 2021.
[21] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, Aug. 2016.
[22] G. Ke et al., “Lightgbm: A Highly Efficient Gradient Boosting Decision Tree,” Advances in neural information processing systems, vol. 30, pp. 3146–3154, 2017.
[23] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine Learning Algorithms,” arXiv:1206.2944 [cs, stat], Aug. 2012.
[24] K. B. Abou Omar, “XGBoost and LGBM for Porto Seguro’s Kaggle Challenge: A Comparison,” Preprint Semester Project, 2018.
[25] T. Laharika, V. Ksk, M. Sushruta, M. M. Kumar, and S. Saurabh, “Invoice Deduction Classification Using LGBM Prediction Model,” Lecture Notes in Electrical Engineering, vol. 709, pp. 127–137, 2021.
[26] M. Massaoudi, S. S. Refaat, I. Chihi, M. Trabelsi, F. S. Oueslati, and H. Abu-Rub, “A Novel Stacked Generalization Ensemble-Based Hybrid LGBM-XGB-MLP Model for Short-Term Load Forecasting,” Energy, vol. 214, p. 118874, Jan. 2021.
[27] X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma, “A Survey on Ensemble Learning,” Frontiers of Computer Science, vol. 14, no. 2, pp. 241–258, Apr. 2020.
[28] S. Lim and S. Chi, “XGBoost Application on Bridge Management Systems for Proactive Damage Estimation,” Advanced Engineering Informatics, vol. 41, p. 100922, Aug. 2019.
[29] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” Advances in Neural Information Processing Systems, vol. 30, pp. 4765–4774, 2017.
[30] K. E. Mokhtari, B. P. Higdon, and A. Başar, “Interpreting Financial Time Series with SHAP Values,” in 29th Annual International Conference on Computer Science and Software Engineering, USA, Nov. 2019, pp. 166–172.
[31] L. E. Peterson, “K-Nearest Neighbor,” Scholarpedia, vol. 4, no. 2, p. 1883, 2009.
[32] X. Yu, S. Ergan, and G. Dedemen, “A Data-Driven Approach to Extract Operational Signatures of HVAC Systems and Analyze Impact on Electricity Consumption,” Applied Energy, vol. 253, p. 113497, Nov. 2019.
[33] 黃仲翊,「外部輸入非線性自動迴歸模型應用於冰水主機耗能分析」,碩士論文,冷凍空調工程系所,國立臺北科技大學,臺北市,2017。
[34] J.-H. Kim, N.-C. Seong, and W. Choi, “Modeling and Optimizing a Chiller System Using a Machine Learning Algorithm,” Energies, vol. 12, no. 15, Art. no. 15, Jan. 2019.
[35] S. Qiu, Z. Li, Z. Li, and X. Zhang, “Model-Free Optimal Chiller Loading Method Based on Q-Learning,” Science and Technology for the Built Environment, vol. 26, no. 8, pp. 1100–1116, Sep. 2020.
[36] R. M. Schmidt, F. Schneider, and P. Hennig, “Descending Through a Crowded Valley -- Benchmarking Deep Learning Optimizers,” arXiv:2007.01547 [cs, stat], Feb. 2021.
[37] F. Acerbi, M. Rampazzo, and G. Nicolao, “An Exact Algorithm for the Optimal Chiller Loading Problem and Its Application to the Optimal Chiller Sequencing Problem,” Energies, vol. 13, Dec. 2020.
[38] 鄧翔運,(王文俊指導)「基於機器學習之織布定型機與冰機節能分析與肇因診斷」,碩士論文,電機工程學系,國立中央大學,桃園市,2020。
[39] 陳輝俊,「空調節能技術與能源管理」,台電空調技術運用研討會,2016。
[40] T. Hartman, “All-Variable Speed Centrifugal Chiller Plants,” ASHRAE Journal, vol. 56, no. 6, pp. 68–79, 2014.
[41] Y. Zhao, Z. Nasrullah, and Z. Li, “PyOD: A Python Toolbox for Scalable Outlier Detection,” Journal of Machine Learning Research, vol. 20, pp. 1–7, May 2019.
[42] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, and A. Mueller, “Scikit-learn: Machine Learning Without Learning the Machinery,” GetMobile: Mobile Computing and Communications, vol. 19, no. 1, pp. 29–33, Jun. 2015.
[43] M. J. Azur, E. A. Stuart, C. Frangakis, and P. J. Leaf, “Multiple Imputation by Chained Equations: What Is It and How Does It Work?,” International Journal of Methods in Psychiatric Research, vol. 20, no. 1, pp. 40-49, 2011.
[44] J. Neyman, “On the Two Different Aspects of the Representative Method: The Method of Stratified Sampling and the Method of Purposive Selection,” in Breakthroughs in Statistics: Methodology and Distribution, S. Kotz and N. L. Johnson, Eds. New York, NY: Springer, 1992, pp. 123–150.
[45] T. Pevný, “Loda: Lightweight On-line Detector of Anomalies,” Machine Learning, vol. 102, no. 2, pp. 275–304, Feb. 2016.
[46] “Bayesian optimization with skopt — scikit-optimize 0.8.1 documentation.” https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html (accessed Jun. 02, 2021).
[47] T. M. Cover, “Hypothesis Testing with Finite Statistics,” the Annals of Mathematical Statistics, vol. 40, no. 3, pp. 828–835, 1969.
[48] A. Ross and V. L. Willson, “Paired Samples T-Test,” in Basic and Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures, A. Ross and V. L. Willson, Eds. Rotterdam: SensePublishers, 2017, pp. 17–19.
[49] M. Rosenblatt, “A Central Limit Theorem and a Strong Mixing Condition,” Proceedings of the National Academy of Sciences of the United States of America, vol. 42, no. 1, pp. 43–47, Jan. 1956.
[50] D. Pelleg and A. Moore, “X-means: Extending K-means with Efficient Estimation of the Number of Clusters,” in 17th International Conference on Machine Learning, 2000, pp. 727–734.
[51] A. Vince, “A Framework for the Greedy Algorithm,” Discrete Applied Mathematics, vol. 121, no. 1–3, pp. 247–260, 2002.
指導教授 王文俊(Wen-June Wang) 審核日期 2021-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明