參考文獻 |
Allahyari, M., Pouriyeh, S., Assefi, M., Safaei, S., Trippe, E. D., Gutierrez, J. B., & Kochut, K. (2017). Text Summarization Techniques: A Brief Survey.
Aronson, A. R., & Lang, F. M. (2010). An overview of MetaMap: Historical perspective and recent advances. Journal of the American Medical Informatics Association, 17(3), 229–236. https://doi.org/10.1136/jamia.2009.002733
Batet, M., Sánchez, D., & Valls, A. (2011). An ontology-based measure to compute semantic similarity in biomedicine. Journal of Biomedical Informatics, 44(1), 118–125. https://doi.org/10.1016/j.jbi.2010.09.002
Batley, N. J., Osman, H. O., Kazzi, A. A., & Musallam, K. M. (2011). Implementation of an emergency department computer system: Design features that users value. Journal of Emergency Medicine, 41(6), 693–700. https://doi.org/10.1016/j.jemermed.2010.05.014
Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., … Shekelle, P. G. (2006). Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Annals of Internal Medicine, 144(10), 742–752. https://doi.org/10.7326/0003-4819-144-10-200605160-00125
Chen, L., Song, L., Shao, Y., Li, D., & Ding, K. (2019). Using natural language processing to extract clinically useful information from Chinese electronic medical records. International Journal of Medical Informatics, 124, 6–12. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2019.01.004
Cilibrasi, R. L., & Vitányi, P. M. B. (2007). The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering, 19(3), 370–383. https://doi.org/10.1109/TKDE.2007.48
Fiszman, M., Rindflesch, T. C., & Kilicoglu, H. (2004). Abstraction summarization for managing the biomedical research literature. 76–83. https://doi.org/10.3115/1596431.1596442
Handel, D. A., Wears, R. L., Nathanson, L. A., & Pines, J. M. (2011). Using Information Technology to Improve the Quality and Safety of Emergency Care. Academic Emergency Medicine, 18(6), e45–e51. https://doi.org/https://doi.org/10.1111/j.1553-2712.2011.01070.x
Hingle, S. (2016). Electronic Health Records: An Unfulfilled Promise and a Call to Action. Annals of Internal Medicine, 165(11), 818–819. https://doi.org/10.7326/M16-1757
Hirschtick, R. E. (2006). A piece of my mind. Copy-and-paste. JAMA, 295(20), 2335–2336. https://doi.org/10.1001/jama.295.20.2335
Hu, Q., Huang, Z., ten Teije, A., & van Harmelen, F. (2015). Detecting new evidence for evidence-based guidelines using a semantic distance method. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9105, 307–316. https://doi.org/10.1007/978-3-319-19551-3_39
Humphrey, S. M., Rogers, W. J., Kilicoglu, H., Demner-Fushman, D., & Rindflesch, T. C. (2006). Word sense disambiguation by selecting the best semantic type based on journal descriptor indexing: Preliminary experiment. Journal of the American Society for Information Science and Technology, 57(1), 96–113. https://doi.org/10.1002/asi.20257
Jiang, J. J., & Conrath, D. W. (1997). Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy. Proceedings of the 10th Research on Computational Linguistics International Conference, 19–33. Taipei, Taiwan: The Association for Computational Linguistics and Chinese Language Processing (ACLCLP). Retrieved from https://www.aclweb.org/anthology/O97-1002
Leacock, C., & Chodorow, M. (1998). Combining local context and WordNet similarity for word sense identification. WordNet: An Electronic Lexical Database, 265–283.
Liang, J., Tsou, C.-H., & Poddar, A. (2019). A Novel System for Extractive Clinical Note Summarization using {EHR} Data. Proceedings of the 2nd Clinical Natural Language Processing Workshop, 46–54. Minneapolis, Minnesota, USA: Association for Computational Linguistics. https://doi.org/10.18653/v1/W19-1906
Lin, D. (1998). An Information-Theoretic Definition of Similarity. Proceedings of the Fifteenth International Conference on Machine Learning, 296–304. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Marc Overhage, J., & McCallie, D. (2020). Physician time spent using the electronic health record during outpatient encounters a descriptive study. Annals of Internal Medicine, 172(3), 169–174. https://doi.org/10.7326/M18-3684
Markel, A. (2010, May). Copy and paste of electronic health records: a modern medical illness. The American Journal of Medicine, Vol. 123, p. e9. United States. https://doi.org/10.1016/j.amjmed.2009.10.012
McInnes, B. T., Pedersen, T., & Pakhomov, S. V. S. (2009). UMLS-Interface and UMLS-Similarity : open source software for measuring paths and semantic similarity. AMIA ... Annual Symposium Proceedings. AMIA Symposium, 2009, 431–435. Retrieved from https://pubmed.ncbi.nlm.nih.gov/20351894
Menachemi, N., & Collum, T. H. (2011). Benefits and drawbacks of electronic health record systems. Risk Management and Healthcare Policy, 4, 47–55. https://doi.org/10.2147/RMHP.S12985
Meystre, S. M., Savova, G. K., Kipper-Schuler, K. C., & Hurdle, J. F. (2008). Extracting information from textual documents in the electronic health record: a review of recent research. Yearbook of Medical Informatics, 128–144. https://doi.org/10.1055/s-0038-1638592
Moradi, M., & Ghadiri, N. (2017). Quantifying the informativeness for biomedical literature summarization: An itemset mining method. Computer Methods and Programs in Biomedicine, 146, 77–89. https://doi.org/10.1016/j.cmpb.2017.05.011
Moradi, M., & Ghadiri, N. (2019). Text summarization in the biomedical domain. ArXiv, 1–12.
Morales, L. P., Esteban, A. D., & Gervás, P. (2008). Concept-Graph Based Biomedical Automatic Summarization Using Ontologies. Proceedings of the 3rd Textgraphs Workshop on Graph-Based Algorithms for Natural Language Processing, 53–56. USA: Association for Computational Linguistics.
O’Connor, P. J., Sperl-Hillen, J. A. M., Rush, W. A., Johnson, P. E., Amundson, G. H., Asche, S. E., … Gilmer, T. P. (2011). Impact of electronic health record clinical decision support on diabetes care: A randomized trial. Annals of Family Medicine, 9(1), 12–21. https://doi.org/10.1370/afm.1196
Patwardhan, S, & Pedersen, T. (2006). Using WordNet-based Context Vectors to Estimate the Semantic Relatedness of Concepts. Proceedings of the EACL 2006 Workshop Making Sense of Sense - Bringing Computational Linguistics and Psycholinguistics Together, 1501, 1–8. Trento, Italy.
Patwardhan, Siddharth, & Pedersen, T. (2006). Using WordNet-based Context Vectors to Estimate the Semantic Relatedness of Concepts. In: 11th Conference of the European Chapter of the Association for Computational Linguistics, 1501, 1–8. https://doi.org/citeulike-article-id:1574418
Pivovarov, R., & Elhadad, N. (2015). Automated methods for the summarization of electronic health records. Journal of the American Medical Informatics Association, 22(5), 938–947. https://doi.org/10.1093/jamia/ocv032
Plaza, L., Stevenson, M., & Díaz, A. (2010). Improving Summarization of Biomedical Documents Using Word Sense Disambiguation. Proceedings of the 2010 Workshop on Biomedical Natural Language Processing, 55–63. USA: Association for Computational Linguistics.
Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Çelebi, A., Dimitrov, S., … Zhang, Z. (2004). MEAD-a platform for multidocument multilingual text summarization. Proceedings of the 4th International Conference on Language Resources and Evaluation, LREC 2004, 699–702.
Reeve, L. H., Han, H., & Brooks, A. D. (2007). The use of domain-specific concepts in biomedical text summarization. Information Processing & Management, 43(6), 1765–1776. https://doi.org/https://doi.org/10.1016/j.ipm.2007.01.026
Reeve, L. H., Han, H., Nagori, S. V., Yang, J. C., Schwimmer, T. A., & Brooks, A. D. (2006). Concept frequency distribution in biomedical text summarization. International Conference on Information and Knowledge Management, Proceedings, 604–611. https://doi.org/10.1145/1183614.1183701
Reeve, L., Han, H., & Brooks, A. D. (2006). BioChain: Lexical chaining methods for biomedical text summarization. Proceedings of the ACM Symposium on Applied Computing, 1, 180–184.
Reeves, J. J., Hollandsworth, H. M., Torriani, F. J., Taplitz, R., Abeles, S., Tai-Seale, M., … Longhurst, C. A. (2020). Rapid response to COVID-19: Health informatics support for outbreak management in an academic health system. Journal of the American Medical Informatics Association, 27(6), 853–859. https://doi.org/10.1093/jamia/ocaa037
Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in a Taxonomy. Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 1, 448–453. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
Sánchez, D., Batet, M., Isern, D., & Valls, A. (2012). Ontology-based semantic similarity: A new feature-based approach. Expert Systems with Applications, 39(9), 7718–7728. https://doi.org/10.1016/j.eswa.2012.01.082
Sarkar, K. (2009). Using Domain Knowledge for Text Summarization in Medical Domain. International Journal of Recent Trends in Engineering, 1.
Sarkar, K., Nasipuri, M., & Ghose, S. (2011). Using Machine Learning for Medical Document Summarization. International Journal of Database Theory and Application International Journal of Database Theory and Application, 4(1), 31–48.
Senteio, C., Veinot, T., Adler-Milstein, J., & Richardson, C. (2018). Physicians’ perceptions of the impact of the EHR on the collection and retrieval of psychosocial information in outpatient diabetes care. International Journal of Medical Informatics, 113(January), 9–16. https://doi.org/10.1016/j.ijmedinf.2018.02.003
Sharma, M., & Aggarwal, H. (2016). EHR Adoption in India: Potential and the Challenges. Indian Journal of Science and Technology, 9(34). https://doi.org/10.17485/ijst/2016/v9i34/100211
Shoolin, J., Ozeran, L., Hamann, C., & Bria, W. 2nd. (2013). Association of Medical Directors of Information Systems consensus on inpatient electronic health record documentation. Applied Clinical Informatics, 4(2), 293–303. https://doi.org/10.4338/ACI-2013-02-R-0012
Stone, C. P. (2014). A Glimpse at EHR Implementation Around the World: The Lessons the US Can Learn. Institute for E-Health Policy/HIMSS Foundation, (May), 1–12. Retrieved from http://www.e-healthpolicy.org/docs/A_Glimpse_at_EHR_Implementation_Around_the_World1_ChrisStone.pdf
Wang, Y., & Fang, H. (2016). Extracting Useful Information from Clinical Notes. 1–5.
Wen, H.-C., Chang, W.-P., Hsu, M.-H., Ho, C.-H., & Chu, C.-M. (2019). An Assessment of the Interoperability of Electronic Health Record Exchanges Among Hospitals and Clinics in Taiwan. JMIR Medical Informatics, 7(1), e12630. https://doi.org/10.2196/12630
Wrenn, J. O., Stein, D. M., Bakken, S., & Stetson, P. D. (2010a). Quantifying clinical narrative redundancy in an electronic health record. Journal of the American Medical Informatics Association : JAMIA, 17(1), 49–53. https://doi.org/10.1197/jamia.M3390
Wrenn, J. O., Stein, D. M., Bakken, S., & Stetson, P. D. (2010b). Quantifying clinical narrative redundancy in an electronic health record. Journal of the American Medical Informatics Association, 17(1), 49–53. https://doi.org/10.1197/jamia.M3390
Yadav, P., Steinbach, M., Kumar, V., & Simon, G. (2017). Mining electronic health records (EHR): A survey. ArXiv, 50(6), 1–40.
Zhang, R., Pakhomov, S., McInnes, B. T., & Melton, G. B. (2011). Evaluating measures of redundancy in clinical texts. AMIA ... Annual Symposium Proceedings. AMIA Symposium, 2011, 1612–1620. Retrieved from https://pubmed.ncbi.nlm.nih.gov/22195227
Zhang, R., Pakhomov, S., & Melton, G. B. (2012). Automated identification of relevant new information in clinical narrative. IHI’12 - Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, 837–841. https://doi.org/10.1145/2110363.2110467
Zhang, R., Pakhomov, S., & Melton, G. B. (2014). Longitudinal analysis of new information types in clinical notes. AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Summits on Translational Science, 2014, 232–237. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25717418%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4333708
Zhang, R., Pakhomov, S. V. S., Arsoniadis, E. G., Lee, J. T., Wang, Y., & Melton, G. B. (2017). Detecting clinically relevant new information in clinical notes across specialties and settings. BMC Medical Informatics and Decision Making, 17(Suppl 2). https://doi.org/10.1186/s12911-017-0464-y
Zhang, R., Pakhomov, S. V, Lee, J. T., & Melton, G. B. (2014). Using language models to identify relevant new information in inpatient clinical notes. AMIA ... Annual Symposium Proceedings. AMIA Symposium, 2014, 1268–1276. Retrieved from https://pubmed.ncbi.nlm.nih.gov/25954438 |