博碩士論文 107825005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.36.252
姓名 田昕平(Hsin-Ping Tien)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 以簡單施力作業及重複效應檢驗動作意象與執行之對應關係
(The Examination of the Functional Correspondence between Motor Imagery and Execution with Simple Force Production Task and Repetition Paradigm)
相關論文
★ 作業轉換能力之訓練與轉移效果探討★ 全域型與局部型物體地標對人類空間巡行能力之貢獻
★ 兒童早期至晚期疼痛同理心的神經發展: 事件相關電位研究★ 同理心老化的認知神經機轉:功能性磁振造影研究
★ 動作參數對於選擇性抑制的影響★ 社會場景對於護理人員同理心之調控
★ 泛自閉症障礙症候群處理情緒人聲的不典型表現:腦電波研究★ 即時回饋類型對於雙手協調動作學習之影響
★ Diversity and Commonality of Cognitive Profile among Static, Strategic and Interceptive Sports-Expertise★ Application of a Brain Computer Interfacing System in Comparing Visual verses Haptic Induction of Motor Imaginary Task
★ An FMRI Investigation of Malleable Numerical Representation★ 動態照明在辦公環境應用之可行性評估與眼動儀偵測視覺疲勞之研究
★ Difference and Relationship between Voluntary and Involuntary Inhibition in Elderly and Young Groups★ 年輕與老年族群之控制化與自動化抑制交互影響的行為與事件相關電位特徵
★ 空間性及時間性資訊變化對序列學習影響之探討★ 運用VGG網絡對靜息態功能性磁振造影成分圖進行區分
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 功能性等價假設認為動作意象與實際動作有相同的運作表徵;然而過去研究中所使用的動作意象作業相當多元,對於功能性等價假設的驗証結果並不一致。本研究檢驗功能性等價的調節因子,並且設計較客觀的研究方法量化動作意象。實驗一使用最小化肢體在空間移動的簡單施力作業,以比較作業負荷與動作時長間的線性關係在意象與動作間的差別;結果發現前述線性關係的斜率在動作意象較緩。因為動作時長的測量依賴自我報告,易受到作業要求與執行時個體心理狀態影響;實驗二與三採用快速選擇反應時間作業測量重複效果以更客觀地檢驗動作意象。此作業將初始與探測刺激前後組合,參與者針對初始刺激進行凝視、想像或實際反應,對探測刺激則實際執行相對應動作;當組內刺激重複比非重複情況反應時間快即為重複效果。實驗二發現實際動作的重複效果比動作意象強,凝視則沒有重複效果。實驗三延長初始刺激時間並量測肌電反應作為控制變項;雖再現實驗二之結果,卻未發現實際動作與動作意象的重複效果間有相關聯。本研究藉更客觀的量測,推論動作意象和實際動作並非功能性等價。未來研究可以利用重複效果典範辨識其對應神經機制,以進一步釐清參與控制動作意象和實際動作執行機制間之異同。
摘要(英) The relationship between Motor Imagery (MI) and Motor Execution (ME) has been debated for a long time. The functional equivalence hypothesis asserts identical operating principles underlying motor imagery and motor execution. However, diverse motor tasks have been adopted in the extant literature and inconsistent findings reported. The current study aims to examine the modulating factors of functional equivalence as well as to design objective methods that can better quantify motor imagery. In Experiment 1, isometric force production with minimal spatial kinesthetic movements were adopted to explore how spatial (where) or non-spatial (what) visual information modulate the linear function between task loading and imagery/execution duration. While the functional equivalence predicts identical linear functions for MI and ME, the results indicated deeper slope for the ME than the MI condition for both “where” and “what” feedback groups. The estimation of imagery/execution duration in the Experiment 1 heavily relied on self-report, which may be contaminated by the execution state and task demand. In Experiment 2 and 3, an objective experimental paradigm for assessing MI, the repetition effect, which shows the repeated response is faster than non-repeated ones in ME, was adopted to examine functional equivalence. In Experiment 2, participants were instructed to imagine or execute manual speeded-choices indicated by consecutively presented pairs of visual prime and probe, and reaction times (RT) to probes were compared between trial pairs that required repeated or non-repeated responses to the prime and probe, respectively. Significant repetition effect in both Execution and Imagery conditions (though weaker in the latter) were found, but not in the Perception condition where participants simply observed the prime without executing or imagining responses. In Experiment 3, the mental simulation duration of the Imagery was prolonged to allow sufficient time for completing mental simulation and the electromyography (EMG) activation was controlled. There was still stronger repetition effect in the Execution than the Imagery condition, but repetition effect in Imagery and Execution were not correlated. Taken together, through a novel paradigm which measures motor imagery in a more explicit and objective fashion than conventional methods, we argued that motor imagery is not functionally equivalent to execution. On the basis of the new paradigm, future studies with brain dynamic measures may help to further specify the exact neural mechanisms shared by or distinguishing motor imagery and execution.
關鍵字(中) ★ 動作意象
★ 動作模擬模型
★ 視覺動作連結
關鍵字(英) ★ Motor imagery
★ Motor simulation theory
★ Visuomotor Association
論文目次 中文摘要 i
Abstract ii
Introduction 1
Research Questions and Predictions 4
Experiment 1: Examine Functional Equivalence in Force Production Task 7
Methods 8
Participants 8
Design 9
Task, Stimuli, and Apparatus 10
Procedure 11
Data Analysis 15
Results 17
Discussion 22
Experiment 2: Examining Repetition Effect in Motor Imagery 27
Methods 29
Participants 29
Design 29
Task, Stimuli, and Apparatus 30
Procedure 31
Data Analysis 33
Results 34
RT results 34
Accuracies 35
Correlations among subjective vividness of MI and RT measures 36
Discussion 38
Repetition effect in MI 39
Weaker Repetition Effect in MI than ME 41
Experiment 3: Prolonged Motor Programming Period and Better Control with EMG Recording 43
Methods 43
Participants 43
Design 43
Task, Stimuli, and Apparatus 44
Procedure 44
Data Analysis 44
Results 47
Overall 47
EMG response exclusion group 50
EMG response only group 53
Discussion 54
Muscle activation modulates the repetition effect 55
General Discussion 59
Evidence inconsistent with the functional equivalence hypothesis 59
Comparison between subjective duration paradigm and repetition effect paradigm 60
Limitations 61
Subjective duration measurement 61
Repetition effect paradigm 63
Future Directions 64
Corresponding neurophysiological mechanism 64
Inhibition process of MI 65
References 69
Appendix I: Edinburgh Handedness Inventory 75
Appendix II: Chinese version of Movement Imagery Questionnaire-Revision 76
參考文獻 Bakker, M., de Lange, F. P., Stevens, J. A., Toni, I., & Bloem, B. R. (2007). Motor imagery of gait: a quantitative approach. Exp Brain Res, 179(3), 497-504. https://doi.org/10.1007/s00221-006-0807-x
Bear, M. F., Connors, B. W., & Paradiso, M. A. (2016). Spinal control of movement. In Neuroscience: Exploring the Brain (4th ed., pp. 453-481). Wolters Kluwerr.
Bertelson, P. (1965). Serial Choice Reaction-time as a Function of Response versus Signal-and-Response Repetition. Nature, 206(4980), 217-218. https://doi.org/10.1038/206217a0
Brinkman, L., Stolk, A., Dijkerman, H. C., de Lange, F. P., & Toni, I. (2014). Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J Neurosci, 34(44), 14783-14792. https://doi.org/10.1523/jneurosci.2039-14.2014
Burianová, H., Marstaller, L., Sowman, P., Tesan, G., Rich, A. N., Williams, M., Savage, G., & Johnson, B. W. (2013). Multimodal functional imaging of motor imagery using a novel paradigm. NeuroImage, 71, 50-58. https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.01.001
Cabral-Sequeira, A. S., Coelho, D. B., & Teixeira, L. A. (2016). Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis. Exp Brain Res, 234(6), 1515-1524. https://doi.org/10.1007/s00221-016-4554-3
Calmels, C., & Fournier, J. F. (2001). Duration of physical and mental execution of gymnastic routines. The Sport Psychologist, 15(2), 142-150.
Calmels, C., Holmes, P., Lopez, E., & Naman, V. (2006). Chronometric comparison of actual and imaged complex movement patterns. J Mot Behav, 38(5), 339-348. https://doi.org/10.3200/jmbr.38.5.339-348
Cerritelli, B., Maruff, P., Wilson, P., & Currie, J. (2000). The effect of an external load on the force and timing components of mentally represented actions. Behavioural Brain Research, 108(1), 91-96. https://doi.org/https://doi.org/10.1016/S0166-4328(99)00138-2
Cheyne, D., & Ferrari, P. (2013). MEG studies of motor cortex gamma oscillations: evidence for a gamma "fingerprint" in the brain? Frontiers in Human Neuroscience, 7, 575-575. https://doi.org/10.3389/fnhum.2013.00575
Courtine, G., Papaxanthis, C., Gentili, R., & Pozzo, T. (2004). Gait-dependent motor memory facilitation in covert movement execution. Cognitive Brain Research, 22(1), 67-75. https://doi.org/https://doi.org/10.1016/j.cogbrainres.2004.07.008
Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behav Brain Res, 34(1-2), 35-42. https://doi.org/10.1016/s0166-4328(89)80088-9
Decety, J., & Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain Cogn, 11(1), 87-97. https://doi.org/10.1016/0278-2626(89)90007-9
Di Rienzo, F., Guillot, A., Daligault, S., Delpuech, C., Rode, G., & Collet, C. (2014). Motor inhibition during motor imagery: a MEG study with a quadriplegic patient. Neurocase, 20(5), 524-539. https://doi.org/10.1080/13554794.2013.826685
Dickstein, R., & Deutsch, J. E. (2007). Motor imagery in physical therapist practice. Phys Ther, 87(7), 942-953. https://doi.org/10.2522/ptj.20060331
Duann, J.-R., & Chiou, J.-C. (2016). A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation. PLOS ONE, 11(9), e0162546. https://doi.org/10.1371/journal.pone.0162546
Duque, J., Greenhouse, I., Labruna, L., & Ivry, R. B. (2017). Physiological Markers of Motor Inhibition during Human Behavior. Trends Neurosci, 40(4), 219-236. https://doi.org/10.1016/j.tins.2017.02.006
Gentili, R., Cahouet, V., Ballay, Y., & Papaxanthis, C. (2004). Inertial properties of the arm are accurately predicted during motor imagery. Behav Brain Res, 155(2), 231-239. https://doi.org/10.1016/j.bbr.2004.04.027
Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J. B., Gaymard, B., Marsault, C., Agid, Y., & Le Bihan, D. (2000). Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex, 10(11), 1093-1104. https://doi.org/10.1093/cercor/10.11.1093
Glover, S., & Baran, M. (2017). The motor-cognitive model of motor imagery: Evidence from timing errors in simulated reaching and grasping. J Exp Psychol Hum Percept Perform, 43(7), 1359-1375. https://doi.org/10.1037/xhp0000389
Glover, S., Bibby, E., & Tuomi, E. (2020). Executive functions in motor imagery: support for the motor-cognitive model over the functional equivalence model. Exp Brain Res, 238(4), 931-944. https://doi.org/10.1007/s00221-020-05756-4
Grealy, M. A., & Shearer, G. F. (2008). Timing processes in motor imagery. European Journal of Cognitive Psychology, 20(5), 867-892. https://doi.org/10.1080/09541440701618782
Gu, B.-M., & Meck, W. H. (2011). New Perspectives on Vierordt’s Law: Memory-Mixing in Ordinal Temporal Comparison Tasks. In A. Vatakis, A. Esposito, M. Giagkou, F. Cummins, & G. Papadelis (Eds.), Multidisciplinary Aspects of Time and Time Perception: COST TD0904 International Workshop, Athens, Greece, October 7-8, 2010, Revised Selected Papers (pp. 67-78). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21478-3_6
Guillot, A., Di Rienzo, F., Macintyre, T., Moran, A., & Collet, C. (2012). Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Front Hum Neurosci, 6, 247. https://doi.org/10.3389/fnhum.2012.00247
Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., & Jackson, P. L. (2013). The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev, 37(5), 930-949. https://doi.org/10.1016/j.neubiorev.2013.03.017
Hall, C. R., & Martin, K. A. (1997). Measuring movement imagery abilities: A revision of the Movement Imagery Questionnaire. Journal of Mental Imagery, 21(1-2), 143-154.
Henson, R. N., Eckstein, D., Waszak, F., Frings, C., & Horner, A. J. (2014). Stimulus-response bindings in priming. Trends in cognitive sciences, 18(7), 376-384. https://doi.org/10.1016/j.tics.2014.03.004
Herwig, A., Prinz, W., & Waszak, F. (2007). Two modes of sensorimotor integration in intention-based and stimulus-based actions. Q J Exp Psychol (Hove), 60(11), 1540-1554. https://doi.org/10.1080/17470210601119134
Herwig, A., & Waszak, F. (2012). Action-Effect Bindings and Ideomotor Learning in Intention- and Stimulus-Based Actions [Original Research]. Frontiers in Psychology, 3(444). https://doi.org/10.3389/fpsyg.2012.00444
Horner, A. J., & Henson, R. N. (2009). Bindings between stimuli and multiple response codes dominate long-lag repetition priming in speeded classification tasks. J Exp Psychol Learn Mem Cogn, 35(3), 757-779. https://doi.org/10.1037/a0015262
Hydock, C., Patai, E. Z., & Sohn, M. H. (2013). Distinct response components indicate that binding is the primary cause of response repetition effects. J Exp Psychol Hum Percept Perform, 39(6), 1598-1611. https://doi.org/10.1037/a0032590
Ito, M. (1999). Relation of repetition effect and response programming in a speeded choice task. Percept Mot Skills, 88(2), 503-514. https://doi.org/10.2466/pms.1999.88.2.503
Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(2), 187-202. https://doi.org/10.1017/S0140525X00034026
Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419-1432. https://doi.org/10.1016/0028-3932(95)00073-c
Jeannerod, M. (2001). Neural Simulation of Action: A Unifying Mechanism for Motor Cognition. NeuroImage, 14(1), S103-S109. https://doi.org/https://doi.org/10.1006/nimg.2001.0832
Joundi, Raed A., Jenkinson, N., Brittain, J.-S., Aziz, Tipu Z., & Brown, P. (2012). Driving Oscillatory Activity in the Human Cortex Enhances Motor Performance. Current Biology, 22(5), 403-407. https://doi.org/https://doi.org/10.1016/j.cub.2012.01.024
Kropotov, J. D. (2009). Chapter 2 - Alpha Rhythms. In J. D. Kropotov (Ed.), Quantitative EEG, Event-Related Potentials and Neurotherapy (pp. 29-58). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374512-5.00002-5
Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 387-394. https://doi.org/10.1037/0096-1523.27.2.387
Lin, C.-H. (2011). Development of the Chinese Movement Imagery Questionnaire-Revision. Sports & Exercise Research, 13(3), 289-300. https://doi.org/10.5297/ser.1303.008
Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., & Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci, 11(5), 491-501. https://doi.org/10.1162/089892999563553
Louis, M., Collet, C., & Guillot, A. (2011). Differences in motor imagery times during aroused and relaxed conditions. Journal of Cognitive Psychology, 23(3), 374-382. https://doi.org/10.1080/20445911.2011.521739
Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306-326. https://doi.org/https://doi.org/10.1016/j.brainresrev.2008.12.024
O’Shea, H., & Moran, A. (2017). Does Motor Simulation Theory Explain the Cognitive Mechanisms Underlying Motor Imagery? A Critical Review [Review]. Frontiers in Human Neuroscience, 11(72). https://doi.org/10.3389/fnhum.2017.00072
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/https://doi.org/10.1016/0028-3932(71)90067-4
Page, S. J., Levine, P., Sisto, S., & Johnston, M. V. (2001). A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil, 15(3), 233-240. https://doi.org/10.1191/026921501672063235
Papaxanthis, C., Pozzo, T., Kasprinski, R., & Berthoz, A. (2003). Comparison of actual and imagined execution of whole-body movements after a long exposure to microgravity. Neurosci Lett, 339(1), 41-44. https://doi.org/10.1016/s0304-3940(02)01472-6
Papaxanthis, C., Schieppati, M., Gentili, R., & Pozzo, T. (2002). Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Exp Brain Res, 143(4), 447-452. https://doi.org/10.1007/s00221-002-1012-1
Pashler, H., & Baylis, G. C. (1991). Procedural learning: II. Intertrial repetition effects in speeded-choice tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(1), 33-48. https://doi.org/10.1037/0278-7393.17.1.33
Pfurtscheller, G., & Aranibar, A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalography and Clinical Neurophysiology, 46(2), 138-146. https://doi.org/https://doi.org/10.1016/0013-4694(79)90063-4
Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2), 65-68. https://doi.org/https://doi.org/10.1016/S0304-3940(97)00889-6
Reed, C. L. (2002). Chronometric comparisons of imagery to action: visualizing versus physically performing springboard dives. Mem Cognit, 30(8), 1169-1178. https://doi.org/10.3758/bf03213400
Ridderinkhof, K. R., & Brass, M. (2015). How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise. J Physiol Paris, 109(1-3), 53-63. https://doi.org/10.1016/j.jphysparis.2015.02.003
Rieger, M., Dahm, S. F., & Koch, I. (2017). Inhibition in motor imagery: a novel action mode switching paradigm. Psychon Bull Rev, 24(2), 459-466. https://doi.org/10.3758/s13423-016-1095-5
Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG rhythms′ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex [https://doi.org/10.1002/hbm.20585]. Human Brain Mapping, 30(4), 1168-1187. https://doi.org/https://doi.org/10.1002/hbm.20585
Sidaway, B., & Trzaska, A. (2005). Can Mental Practice Increase Ankle Dorsiflexor Torque? Physical Therapy, 85(10), 1053-1060. https://doi.org/10.1093/ptj/85.10.1053
Smith, M. C. (1968). Repetition effect and short-term memory. J Exp Psychol, 77(3), 435-439. https://doi.org/10.1037/h0021293
Straub, W. F. (1989). The effect of three different methods of mental training on dart throwing performance. The Sport Psychologist, 3(2), 133-141.
Tamir, R., Dickstein, R., & Huberman, M. (2007). Integration of Motor Imagery and Physical Practice in Group Treatment Applied to Subjects With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 21(1), 68-75. https://doi.org/10.1177/1545968306292608
Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology Section A, 47(3), 631-650. https://doi.org/10.1080/14640749408401131
Verbruggen, F., Logan, G. D., Liefooghe, B., & Vandierendonck, A. (2008). Short-term aftereffects of response inhibition: repetition priming or between-trial control adjustments? J Exp Psychol Hum Percept Perform, 34(2), 413-426. https://doi.org/10.1037/0096-1523.34.2.413
Wearden, J. H. (2003). Applying the scalar timing model to human time psychology: Progress and challenges. In Time and mind II: Information processing perspectives. (pp. 21-39). Hogrefe & Huber Publishers.
Wearden, J. H., Parry, A., & Stamp, L. (2002). Is subjective shortening in human memory unique to time representations? Q J Exp Psychol B, 55(1), 1-25. https://doi.org/10.1080/02724990143000108
Wrisberg, C. A., & Anshel, M. H. (1989). The effect of cognitive strategies on the free throw shooting performance of young athletes. The Sport Psychologist, 3(2), 95-104. https://doi.org/10.1123/tsp.3.2.95
指導教授 張智宏(Erik Chihung Chang) 審核日期 2021-5-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明