參考文獻 |
Bakker, M., de Lange, F. P., Stevens, J. A., Toni, I., & Bloem, B. R. (2007). Motor imagery of gait: a quantitative approach. Exp Brain Res, 179(3), 497-504. https://doi.org/10.1007/s00221-006-0807-x
Bear, M. F., Connors, B. W., & Paradiso, M. A. (2016). Spinal control of movement. In Neuroscience: Exploring the Brain (4th ed., pp. 453-481). Wolters Kluwerr.
Bertelson, P. (1965). Serial Choice Reaction-time as a Function of Response versus Signal-and-Response Repetition. Nature, 206(4980), 217-218. https://doi.org/10.1038/206217a0
Brinkman, L., Stolk, A., Dijkerman, H. C., de Lange, F. P., & Toni, I. (2014). Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J Neurosci, 34(44), 14783-14792. https://doi.org/10.1523/jneurosci.2039-14.2014
Burianová, H., Marstaller, L., Sowman, P., Tesan, G., Rich, A. N., Williams, M., Savage, G., & Johnson, B. W. (2013). Multimodal functional imaging of motor imagery using a novel paradigm. NeuroImage, 71, 50-58. https://doi.org/https://doi.org/10.1016/j.neuroimage.2013.01.001
Cabral-Sequeira, A. S., Coelho, D. B., & Teixeira, L. A. (2016). Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis. Exp Brain Res, 234(6), 1515-1524. https://doi.org/10.1007/s00221-016-4554-3
Calmels, C., & Fournier, J. F. (2001). Duration of physical and mental execution of gymnastic routines. The Sport Psychologist, 15(2), 142-150.
Calmels, C., Holmes, P., Lopez, E., & Naman, V. (2006). Chronometric comparison of actual and imaged complex movement patterns. J Mot Behav, 38(5), 339-348. https://doi.org/10.3200/jmbr.38.5.339-348
Cerritelli, B., Maruff, P., Wilson, P., & Currie, J. (2000). The effect of an external load on the force and timing components of mentally represented actions. Behavioural Brain Research, 108(1), 91-96. https://doi.org/https://doi.org/10.1016/S0166-4328(99)00138-2
Cheyne, D., & Ferrari, P. (2013). MEG studies of motor cortex gamma oscillations: evidence for a gamma "fingerprint" in the brain? Frontiers in Human Neuroscience, 7, 575-575. https://doi.org/10.3389/fnhum.2013.00575
Courtine, G., Papaxanthis, C., Gentili, R., & Pozzo, T. (2004). Gait-dependent motor memory facilitation in covert movement execution. Cognitive Brain Research, 22(1), 67-75. https://doi.org/https://doi.org/10.1016/j.cogbrainres.2004.07.008
Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented actions. Behav Brain Res, 34(1-2), 35-42. https://doi.org/10.1016/s0166-4328(89)80088-9
Decety, J., & Michel, F. (1989). Comparative analysis of actual and mental movement times in two graphic tasks. Brain Cogn, 11(1), 87-97. https://doi.org/10.1016/0278-2626(89)90007-9
Di Rienzo, F., Guillot, A., Daligault, S., Delpuech, C., Rode, G., & Collet, C. (2014). Motor inhibition during motor imagery: a MEG study with a quadriplegic patient. Neurocase, 20(5), 524-539. https://doi.org/10.1080/13554794.2013.826685
Dickstein, R., & Deutsch, J. E. (2007). Motor imagery in physical therapist practice. Phys Ther, 87(7), 942-953. https://doi.org/10.2522/ptj.20060331
Duann, J.-R., & Chiou, J.-C. (2016). A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation. PLOS ONE, 11(9), e0162546. https://doi.org/10.1371/journal.pone.0162546
Duque, J., Greenhouse, I., Labruna, L., & Ivry, R. B. (2017). Physiological Markers of Motor Inhibition during Human Behavior. Trends Neurosci, 40(4), 219-236. https://doi.org/10.1016/j.tins.2017.02.006
Gentili, R., Cahouet, V., Ballay, Y., & Papaxanthis, C. (2004). Inertial properties of the arm are accurately predicted during motor imagery. Behav Brain Res, 155(2), 231-239. https://doi.org/10.1016/j.bbr.2004.04.027
Gerardin, E., Sirigu, A., Lehéricy, S., Poline, J. B., Gaymard, B., Marsault, C., Agid, Y., & Le Bihan, D. (2000). Partially overlapping neural networks for real and imagined hand movements. Cereb Cortex, 10(11), 1093-1104. https://doi.org/10.1093/cercor/10.11.1093
Glover, S., & Baran, M. (2017). The motor-cognitive model of motor imagery: Evidence from timing errors in simulated reaching and grasping. J Exp Psychol Hum Percept Perform, 43(7), 1359-1375. https://doi.org/10.1037/xhp0000389
Glover, S., Bibby, E., & Tuomi, E. (2020). Executive functions in motor imagery: support for the motor-cognitive model over the functional equivalence model. Exp Brain Res, 238(4), 931-944. https://doi.org/10.1007/s00221-020-05756-4
Grealy, M. A., & Shearer, G. F. (2008). Timing processes in motor imagery. European Journal of Cognitive Psychology, 20(5), 867-892. https://doi.org/10.1080/09541440701618782
Gu, B.-M., & Meck, W. H. (2011). New Perspectives on Vierordt’s Law: Memory-Mixing in Ordinal Temporal Comparison Tasks. In A. Vatakis, A. Esposito, M. Giagkou, F. Cummins, & G. Papadelis (Eds.), Multidisciplinary Aspects of Time and Time Perception: COST TD0904 International Workshop, Athens, Greece, October 7-8, 2010, Revised Selected Papers (pp. 67-78). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21478-3_6
Guillot, A., Di Rienzo, F., Macintyre, T., Moran, A., & Collet, C. (2012). Imagining is Not Doing but Involves Specific Motor Commands: A Review of Experimental Data Related to Motor Inhibition. Front Hum Neurosci, 6, 247. https://doi.org/10.3389/fnhum.2012.00247
Hétu, S., Grégoire, M., Saimpont, A., Coll, M. P., Eugène, F., Michon, P. E., & Jackson, P. L. (2013). The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev, 37(5), 930-949. https://doi.org/10.1016/j.neubiorev.2013.03.017
Hall, C. R., & Martin, K. A. (1997). Measuring movement imagery abilities: A revision of the Movement Imagery Questionnaire. Journal of Mental Imagery, 21(1-2), 143-154.
Henson, R. N., Eckstein, D., Waszak, F., Frings, C., & Horner, A. J. (2014). Stimulus-response bindings in priming. Trends in cognitive sciences, 18(7), 376-384. https://doi.org/10.1016/j.tics.2014.03.004
Herwig, A., Prinz, W., & Waszak, F. (2007). Two modes of sensorimotor integration in intention-based and stimulus-based actions. Q J Exp Psychol (Hove), 60(11), 1540-1554. https://doi.org/10.1080/17470210601119134
Herwig, A., & Waszak, F. (2012). Action-Effect Bindings and Ideomotor Learning in Intention- and Stimulus-Based Actions [Original Research]. Frontiers in Psychology, 3(444). https://doi.org/10.3389/fpsyg.2012.00444
Horner, A. J., & Henson, R. N. (2009). Bindings between stimuli and multiple response codes dominate long-lag repetition priming in speeded classification tasks. J Exp Psychol Learn Mem Cogn, 35(3), 757-779. https://doi.org/10.1037/a0015262
Hydock, C., Patai, E. Z., & Sohn, M. H. (2013). Distinct response components indicate that binding is the primary cause of response repetition effects. J Exp Psychol Hum Percept Perform, 39(6), 1598-1611. https://doi.org/10.1037/a0032590
Ito, M. (1999). Relation of repetition effect and response programming in a speeded choice task. Percept Mot Skills, 88(2), 503-514. https://doi.org/10.2466/pms.1999.88.2.503
Jeannerod, M. (1994). The representing brain: Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17(2), 187-202. https://doi.org/10.1017/S0140525X00034026
Jeannerod, M. (1995). Mental imagery in the motor context. Neuropsychologia, 33(11), 1419-1432. https://doi.org/10.1016/0028-3932(95)00073-c
Jeannerod, M. (2001). Neural Simulation of Action: A Unifying Mechanism for Motor Cognition. NeuroImage, 14(1), S103-S109. https://doi.org/https://doi.org/10.1006/nimg.2001.0832
Joundi, Raed A., Jenkinson, N., Brittain, J.-S., Aziz, Tipu Z., & Brown, P. (2012). Driving Oscillatory Activity in the Human Cortex Enhances Motor Performance. Current Biology, 22(5), 403-407. https://doi.org/https://doi.org/10.1016/j.cub.2012.01.024
Kropotov, J. D. (2009). Chapter 2 - Alpha Rhythms. In J. D. Kropotov (Ed.), Quantitative EEG, Event-Related Potentials and Neurotherapy (pp. 29-58). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-374512-5.00002-5
Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 387-394. https://doi.org/10.1037/0096-1523.27.2.387
Lin, C.-H. (2011). Development of the Chinese Movement Imagery Questionnaire-Revision. Sports & Exercise Research, 13(3), 289-300. https://doi.org/10.5297/ser.1303.008
Lotze, M., Montoya, P., Erb, M., Hülsmann, E., Flor, H., Klose, U., Birbaumer, N., & Grodd, W. (1999). Activation of cortical and cerebellar motor areas during executed and imagined hand movements: an fMRI study. J Cogn Neurosci, 11(5), 491-501. https://doi.org/10.1162/089892999563553
Louis, M., Collet, C., & Guillot, A. (2011). Differences in motor imagery times during aroused and relaxed conditions. Journal of Cognitive Psychology, 23(3), 374-382. https://doi.org/10.1080/20445911.2011.521739
Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306-326. https://doi.org/https://doi.org/10.1016/j.brainresrev.2008.12.024
O’Shea, H., & Moran, A. (2017). Does Motor Simulation Theory Explain the Cognitive Mechanisms Underlying Motor Imagery? A Critical Review [Review]. Frontiers in Human Neuroscience, 11(72). https://doi.org/10.3389/fnhum.2017.00072
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. https://doi.org/https://doi.org/10.1016/0028-3932(71)90067-4
Page, S. J., Levine, P., Sisto, S., & Johnston, M. V. (2001). A randomized efficacy and feasibility study of imagery in acute stroke. Clin Rehabil, 15(3), 233-240. https://doi.org/10.1191/026921501672063235
Papaxanthis, C., Pozzo, T., Kasprinski, R., & Berthoz, A. (2003). Comparison of actual and imagined execution of whole-body movements after a long exposure to microgravity. Neurosci Lett, 339(1), 41-44. https://doi.org/10.1016/s0304-3940(02)01472-6
Papaxanthis, C., Schieppati, M., Gentili, R., & Pozzo, T. (2002). Imagined and actual arm movements have similar durations when performed under different conditions of direction and mass. Exp Brain Res, 143(4), 447-452. https://doi.org/10.1007/s00221-002-1012-1
Pashler, H., & Baylis, G. C. (1991). Procedural learning: II. Intertrial repetition effects in speeded-choice tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(1), 33-48. https://doi.org/10.1037/0278-7393.17.1.33
Pfurtscheller, G., & Aranibar, A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalography and Clinical Neurophysiology, 46(2), 138-146. https://doi.org/https://doi.org/10.1016/0013-4694(79)90063-4
Pfurtscheller, G., & Neuper, C. (1997). Motor imagery activates primary sensorimotor area in humans. Neuroscience Letters, 239(2), 65-68. https://doi.org/https://doi.org/10.1016/S0304-3940(97)00889-6
Reed, C. L. (2002). Chronometric comparisons of imagery to action: visualizing versus physically performing springboard dives. Mem Cognit, 30(8), 1169-1178. https://doi.org/10.3758/bf03213400
Ridderinkhof, K. R., & Brass, M. (2015). How Kinesthetic Motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise. J Physiol Paris, 109(1-3), 53-63. https://doi.org/10.1016/j.jphysparis.2015.02.003
Rieger, M., Dahm, S. F., & Koch, I. (2017). Inhibition in motor imagery: a novel action mode switching paradigm. Psychon Bull Rev, 24(2), 459-466. https://doi.org/10.3758/s13423-016-1095-5
Ritter, P., Moosmann, M., & Villringer, A. (2009). Rolandic alpha and beta EEG rhythms′ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex [https://doi.org/10.1002/hbm.20585]. Human Brain Mapping, 30(4), 1168-1187. https://doi.org/https://doi.org/10.1002/hbm.20585
Sidaway, B., & Trzaska, A. (2005). Can Mental Practice Increase Ankle Dorsiflexor Torque? Physical Therapy, 85(10), 1053-1060. https://doi.org/10.1093/ptj/85.10.1053
Smith, M. C. (1968). Repetition effect and short-term memory. J Exp Psychol, 77(3), 435-439. https://doi.org/10.1037/h0021293
Straub, W. F. (1989). The effect of three different methods of mental training on dart throwing performance. The Sport Psychologist, 3(2), 133-141.
Tamir, R., Dickstein, R., & Huberman, M. (2007). Integration of Motor Imagery and Physical Practice in Group Treatment Applied to Subjects With Parkinson’s Disease. Neurorehabilitation and Neural Repair, 21(1), 68-75. https://doi.org/10.1177/1545968306292608
Van Selst, M., & Jolicoeur, P. (1994). A solution to the effect of sample size on outlier elimination. The Quarterly Journal of Experimental Psychology Section A, 47(3), 631-650. https://doi.org/10.1080/14640749408401131
Verbruggen, F., Logan, G. D., Liefooghe, B., & Vandierendonck, A. (2008). Short-term aftereffects of response inhibition: repetition priming or between-trial control adjustments? J Exp Psychol Hum Percept Perform, 34(2), 413-426. https://doi.org/10.1037/0096-1523.34.2.413
Wearden, J. H. (2003). Applying the scalar timing model to human time psychology: Progress and challenges. In Time and mind II: Information processing perspectives. (pp. 21-39). Hogrefe & Huber Publishers.
Wearden, J. H., Parry, A., & Stamp, L. (2002). Is subjective shortening in human memory unique to time representations? Q J Exp Psychol B, 55(1), 1-25. https://doi.org/10.1080/02724990143000108
Wrisberg, C. A., & Anshel, M. H. (1989). The effect of cognitive strategies on the free throw shooting performance of young athletes. The Sport Psychologist, 3(2), 95-104. https://doi.org/10.1123/tsp.3.2.95 |