參考文獻 |
Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228-3233.
Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., & Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228-3233.
Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in Cognitive Sciences, 4(11), 417-423.
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of Learning and Motivation (Vol. 8, pp. 47-89). Academic press.
Baddeley, A. D., Allen, R. J., & Hitch, G. J. (2011). Binding in visual working memory: The role of the episodic buffer. Neuropsychologia, 49(6), 1393-1400.
Bastin, C. (2018). Differential age-related effects on conjunctive and relational visual short-term memory binding. Memory, 26(9), 1181-1190.
Borg, C., Leroy, N., Favre, E., Laurent, B., & Thomas-Antérion, C. (2011). How emotional pictures influence visuospatial binding in short-term memory in ageing and Alzheimer’s disease?. Brain and Cognition, 76(1), 20-25.
Brockmole, J. R., & Logie, R. H. (2013). Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Frontiers in Psychology, 4, 12.
Brockmole, J. R., Parra, M. A., Della Sala, S., & Logie, R. H. (2008). Do binding deficits account for age-related decline in visual working memory?. Psychonomic Bulletin & Review, 15(3), 543-547.
Brown, L. A., & Brockmole, J. R. (2010). The role of attention in binding visual features in working memory: Evidence from cognitive ageing. Quarterly Journal of Experimental Psychology, 63(10), 2067-2079.
Brown, L. A., Niven, E. H., Logie, R. H., Rhodes, S., & Allen, R. J. (2017). Visual feature binding in young and older adults: Encoding and suffix interference effects. Memory, 25(2), 261-275.
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85.
Cabeza, R., Grady, C. L., Nyberg, L., McIntosh, A. R., Tulving, E., Kapur, S., ... & Craik, F. I. (1997). Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. Journal of Neuroscience, 17(1), 391-400.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-114.
Cowan, N., Naveh-Benjamin, M., Kilb, A., & Saults, J. S. (2006). Life-span development of visual working memory: When is feature binding difficult?. Developmental Psychology, 42(6), 1089.
Fandakova, Y., Sander, M. C., Werkle-Bergner, M., & Shing, Y. L. (2014). Age differences in short-term memory binding are related to working memory performance across the lifespan. Psychology and Aging, 29(1), 140.
Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12(2), 105-118.
Gazzaley, A., & D′esposito, M. (2007). Top-down modulation and normal aging. Annals of the New York Academy of Sciences, 1097(1),67–83.
Gazzaley, A., Clapp, W., Kelley, J., McEvoy, K., Knight, R. T., & D’Esposito, M. (2008). Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proceedings of the National Academy of Sciences, 105(35), 13122–13126.
Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374–385.
Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology, 48(12), 1711–1725.
Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., & Bäuml, K. H. (2007). Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage, 37(4), 1465-1473.
Hsu, T. Y., Juan, C. H., & Tseng, P. (2016). Individual differences and state-dependent responses in transcranial direct current stimulation. Frontiers in Human Neuroscience, 10, 643.
Hsu, T. Y., Tseng, P., Liang, W. K., Cheng, S. K., & Juan, C. H. (2014). Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. Neuroimage, 98, 306-313. Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in cognitive sciences, 4(11), 417-423.
Isella, V., Molteni, F., Mapelli, C., & Ferrarese, C. (2015). Short term memory for single surface features and bindings in ageing: A replication study. Brain and Cognition, 96, 38-42.
Jensen, O., & Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Frontiers in Human Neuroscience, 4, 186.
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex (New York, N.Y. : 1991), 12(8), 877–882.
Klaassen, E. B., Evers, E. A., de Groot, R. H., Backes, W. H., Veltman, D. J., & Jolles, J. (2014). Working memory in middle-aged males: Age-related brain activation changes and cognitive fatigue effects. Biological Psychology, 96, 134-143.
Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1), 319–340.
Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2), 169–195.
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Sciences, 16(12),
Krause, C. M., Sillanmäki, L., Koivisto, M., Saarela, C., Häggqvist, A., Laine, M., & Hämäläinen, H. (2000). The effects of memory load on event-related EEG desynchronization and synchronization. Clinical Neurophysiology, 111(11), 2071–2078.
Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell′Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512.
Martínez, J. F., Trujillo, C., Arévalo, A., Ibáñez, A., & Cardona, J. F. (2019). Assessment of conjunctive binding in aging: A promising approach for Alzheimer’s disease detection. Journal of Alzheimer′s Disease, 69(1), 71-81.
Meltzer, J. A., Zaveri, H. P., Goncharova, I. I., Distasio, M. M., Papademetris, X., Spencer, S. S., Spencer, D. D., & Constable, R. T. (2008). Effects of working memory load on oscillatory power in human intracranial EEG. Cerebral Cortex (New York, N.Y. : 1991), 18(8), 1843–1855.
Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10(1-2), 197-206.
Neuper, C., & Pfurtscheller, G. (2001). Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. International Journal of Psychophysiology, 43(1), 41-58.
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299.
Parra, M. A., Abrahams, S., Logie, R. H., Mendez, L. G., Lopera, F., & Della Sala, S. (2010). Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain, 133(9), 2702-2713.
Parra, M. A., Della Sala, S., Logie, R. H., & Morcom, A. M. (2014). Neural correlates of shape–color binding in visual working memory. Neuropsychologia, 52, 27-36.
Pesonen, M., Hämäläinen, H., & Krause, C. M. (2007). Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain Research, 1138, 171–177.
Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842-1857.
Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16(2), 283-290.
Proskovec, A. L., Heinrichs-Graham, E., & Wilson, T. W. (2019).Load modulates the alpha and beta oscillatory dynamics serving verbal working memory. NeuroImage, 184, 256–265.
Rajagovindan, R., & Ding, M. (2010). From prestimulus alpha oscillationto visual-evoked response: An inverted-U function and its attentional modulation. Journal of Cognitive Neuroscience, 23(6).
Read, C. A., Rogers, J. M., & Wilson, P. H. (2016). Working memory binding of visual object features in older adults. Aging, Neuropsychology, and Cognition, 23(3), 263-281.
Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174-187.
Rhodes, S., Parra, M. A., & Logie, R. H. (2016). Ageing and feature binding in visual working memory: The role of presentation time. Quarterly Journal of Experimental Psychology, 69(4), 654-668.
Rhodes, S., Parra, M. A., Cowan, N., & Logie, R. H. (2017). Healthy aging and visual working memory: The effect of mixing feature and conjunction changes. Psychology and Aging, 32(4), 354.
Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324-330.
Salthouse, T. A. (1994). The aging of working memory. Neuropsychology, 8(4), 535.
Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., Gruber, W. R., & Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22(11), 2917–2926
Song, J. H., & Jiang, Y. (2006). Visual working memory for simple and complex features: an fMRI study. NeuroImage, 30(3), 963–972.
Stipacek, A., Grabner, R. H., Neuper, C., Fink, A., & Neubauer, A. C.(2003). Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neuroscience Letters, 353(3), 193–196.
Tsai FF, Fan SZ, Lin YS, Huang NE, Yeh JR (2016) Investigating Power Density and the Degree of Nonlinearity in Intrinsic Components of Anesthesia EEG by the Hilbert-Huang Transform: An Example Using Ketamine and Alfentanil. PLOS ONE 11(12): e0168108.
Tseng, P., Chang, Y. T., Chang, C. F., Liang, W. K., & Juan, C. H. (2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Scientific Reports, 6(1), 1-15.
Tseng, P., Hsu, T. Y., Chang, C. F., Tzeng, O. J., Hung, D. L., Muggleton, N. G., ... & Juan, C. H. (2012). Unleashing potential: transcranial direct current stimulation over the right posterior parietal cortex improves change detection in low-performing individuals. Journal of Neuroscience, 32(31), 10554-10561.
van Dijk, H., van der Werf, J., Mazaheri, A., Medendorp, W. P., & Jensen, O. (2010). Modulations in oscillatory activity with amplitude asymmetry can produce cognitively relevant event-related responses. Proceedings of the National Academy of Sciences, 107(2), 900-905.
Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751.
Wild-Wall, N., Falkenstein, M., & Gajewski, P. D. (2011). Age-related differences in working memory performance in a 2-back task. Frontiers in Psychology, 2, 186. |