參考文獻 |
[1] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, “Advanced spectral classifiers for hyperspectral images: A review,” IEEE Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8–32, Mar. 2017.
[2] G. F. Hughes, “On the mean accuracy of statistical pattern recognizers,” IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968.
[3] J. A. Gualtieri and R. F. Cromp, “Support vector machines for hyperspectral remote sensing classification,” Proc. SPIE, vol. 3584, pp. 221–232, Jan. 1999.
[4] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote sensing images with support vector machines,” IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004.
[5] M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804–3814, Nov. 2008.
[6] P. Ghamisi, M. D. Mura, and J. A. Benediktsson, “A survey on spectral– spatial classification techniques based on attribute profiles,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335–2353, May 2015.
[7] Y. Gu, J. Chanussot, X. Jia, and J. A. Benediktsson, “Multiple Kernel learning for hyperspectral image classification: A review,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 11, pp. 6547–6565, Nov. 2017.
[8] Y. Yuan, J. Lin, and Q. Wang, “Hyperspectral image classification via multitask joint sparse representation and stepwise MRF optimization,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 2966–2977, Dec. 2016.
[9] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, “Deep convolutional neural networks for hyperspectral image classification,” J. Sensors., vol. 2015, Jan. 2015, Art. no. 258619.
[10] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification using deep pixel-pair features,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 844–853, Feb. 2017.
[11] W. Shao and S. Du, “Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544–4554, Oct. 2016.
[12] J. Yue, W. Zhao, S. Mao, and H. Liu, “Spectral–spatial classification of hyperspectral images using deep convolutional neural networks,” Remote Sens. Lett., vol. 6, no. 6, pp. 468–477, 2015.
[13] H. Liang and Q. Li, “Hyperspectral imagery classification using sparse representations of convolutional neural network features,” Remote Sens., vol. 8, no. 2, p. 99, 2016.
[14] Y. Chen, L. Zhu, P. Ghamisi, X. Jia, G. Li, and L. Tang, “Hyperspectral images classification with Gabor filtering and convolutional neural network,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 12, pp. 2355–2359, Dec. 2017.
[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten and Kilian Q. Weinberger, “Densely Connected Convolutional Networks”, IEEE Transactions on Pattern Analysis and Machine Intelligence Published: 2018
[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, ”Deep Residual Learning for Image Recognition”, 2016, IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
[17] Juncheng Li, Faming Fang, Kangfu Mei, Guixu Zhang, “Multi-scale Residual Network for Image,” European Conference on Computer Vision (ECCV), 2018, pp. 517-532
[18] Alfredo Canziani, Adam Paszke, Eugenio Culurciello, “An Analysis of Deep Neural Network Models for Practical Applications,” arXiv preprint arXiv:1605.07678, 2016 - arxiv.org
[19] Ying-Nong Chen, Cheng-Ta Hsieh, Ming-Gang Wen, Chin-Chuan Han & Kuo-Chin Fan, 2015, “A Dimension Reduction Framework for HSI Classification Using Fuzzy and Kernel NFLE Transformation,” ISSN 2072-4292.
[20] Lin Zhu, Yushi Chen , Member, IEEE, Pedram Ghamisi , Member, IEEE, and Jón Atli Benediktsson , Fellow, “Generative Adversarial Networks for Hyperspectral Image Classification, “ IEEE Transactions on Geoscience and Remote Sensing Vol. 56, Issue 9, pp. 5046 – 5063, 2018.
[21] Tsung-Han Chan, Member, IEEE, Kui Jia, Shenghua Gao, Jiwen Lu, Senior Member, IEEE, Zinan Zeng, and Yi Ma, Fellow, “PCANet: A Simple Deep Learning Baseline for Image Classification?,” IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 12, DECEMBER 2015.
[22] Zilong Zhong, Student Member, IEEE, Jonathan Li , Senior Member, IEEE, Zhiming Luo, and Michael Chapman, “Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework,” IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 56, NO. 2, FEBRUARY 2018.
[23] Z. Yang, T. Dan and Y. Yang, “Multi-Temporal Remote Sensing Image Registration Using Deep Convolutional Features,” in IEEE Access, vol. 6, pp. 38544-38555, 2018. |