博碩士論文 108521031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:113 、訪客IP:3.14.254.32
姓名 徐欣庭(Hsin-Ting Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P 型鎂矽錫熱電材料之製程開發
(Process Innovation of P-type Mg2(Si,Sn) Thermoelectric Materials)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在日常生活中有許多耗費能源生成,卻被作為廢棄的熱能,因此發展出熱
電效應,將熱能與電能之間做轉換,主要可分為發電及致冷,可以利用溫差產生電位差,以及電壓差以電流通入熱電元件中,使元件的端點產生吸熱及放電的現象,而此篇我們著重於用溫差產生電位差。
熱電能源算是一種綠色能源,熱電效應在這幾年逐漸被大家所重視,利用
熱 電材料的特性將廢熱轉換成電能,以達到更高的能量使用效率。可以運用於1. 機械裝置 2.人體溫差穿戴式系統 3.汽車廢熱發電 4.綠能的環保發電系統等,因此 有效率的回收散失的熱能變成一件重要的課題。
由於在轉換的過程中材料並未涉及物理及化學變化,較不會有二氧化碳或
副產物的產生,且熱電材料構造簡單,可達到熱電發電、致冷及溫差發電等功能,熱電材料的優點有體積小、噪音小、使用壽命長、安全環保,可達到輕量化小尺寸的效果,更可取代許多發熱與冷卻系統,具有商業的潛能。
本論文主要是研究 P-type Mg2(Si,Sn) 熱電材料,測試各種不同的製程參數、粉末混合比例、燒結試片的包法、Si 粉的摻雜…等,分析試片的熱電特性,選擇最佳的製程條件製備試片,並連接金屬電極進行單一元件輸出量測;其中 MgSiSn 試片的電阻約為 0.63mΩ,Seebeck 係數為 134 μV/ K,單一元件以鎳片作為試片上下兩端的金屬電極的最大輸出功率約為 339 nW,銅片則為1010 nW。
摘要(英) In daily life, there are many energy generations but used as waste energy. Therefore, the thermoelectric effect is developed to convert thermal energy and electrical energy. It can be divided into power generation and refrigeration. The temperature difference can be used to generate the electric potential difference. The current flows into the thermoelectric device, causing the end of the device to absorb heat and discharge. In this thesis, we focus on generating electric power under a temperature bias. Thermoelectric energy can be regarded as a kind of green energy. In recent years people pay more and more attention to the problem of the thermoelectric effect. Use the characteristics of thermoelectric materials to convert waste heat into electrical energy to achieve higher energy efficiency. It can be used in 1. mechanical device 2. wearable devices using human body temperature difference 3.automobile waste heat generation system 4. Green energy environmentally friendly power generation system, etc. Therefore, efficient recovery of lost heat has become an important issue. Because of conversion process doesn’t involve physical and chemical changes, there will be less carbon dioxide or by-products, and the thermoelectric material has a simple structure, which can achieve the functions of thermoelectric power generation, refrigeration, and thermoelectric power generation. The advantages of thermoelectric materials are small size, low noise, long service life, safety, and environmental III protection, can achieve the effect of lightweight and small size, can replace many heating and cooling systems, and have greater development potential. The main research direction of this thesis is P-type Mg2(Si, Sn) thermoelectric materials. Testing different process parameters, powder material ratio, silicon powder doping, etc. Analyzing their thermoelectric characteristics. Finally, select the best process conditions to prepare samples and connect metal electrodes to measure the output of a single device. Among them, the resistance of the MgSiSn sample made by the best method is about 0.63mΩ, the Seebeck coefficient is 134 μV/K. The maximum output power of a single device with nickel as the metal electrode is 339 nW and copper is 1010 nW.
關鍵字(中) ★ 鎂矽錫
★ 熱電材料
★ 單一元件輸出
★ 熱電優值
關鍵字(英)
論文目次 目錄
摘要............................................................................................................................................I
Abstract .....................................................................................................................................II
誌謝......................................................................................................................................... IV
目錄...........................................................................................................................................V
圖目錄...................................................................................................................................VIII
表目錄...................................................................................................................................XIII
第一章、緒論........................................................................................................................... 1
1.1 前言 ............................................................................................................................ 1
1.2 研究動機 .................................................................................................................... 2
1.3 熱電效應 .................................................................................................................... 8
1.3.1 Seebeck effect ................................................................................................. 8
1.3.2 Peltier effect .................................................................................................... 9
1.3.3 Thomson effect ............................................................................................. 10
1.4 熱電優值 .................................................................................................................. 11
1.5 熱電轉換效率 .......................................................................................................... 12
1.6 熱電材料的應用 ...................................................................................................... 13
1.6.1 熱電發電....................................................................................................... 13
1.6.2 熱電致冷....................................................................................................... 14
1.7 文獻回顧 .................................................................................................................. 15
1.7.1???(??, ??)之熱電材料................................................................................ 15
1.7.2 Mg2Si1-xSnx之固溶體................................................................................... 16
1.7.3 p-type Ag 摻雜之 Mg2Si0.4Sn0.6 ................................................................. 18
1.7.4 p-type Ag 摻雜之 Mg2-xAgxSi0.4Sn0.6............................................................ 19
VI
第二章、量測儀器................................................................................................................. 21
2.1 熱電特性量測 ......................................................................................................... 21
2.1.1 電導率量測................................................................................................... 21
2.1.2 Seebeck coefficient 量測 .............................................................................. 23
2.1.3 熱擴散量測................................................................................................... 24
2.1.4 比熱量測....................................................................................................... 25
2.1.5 密度量測....................................................................................................... 27
2.1.6 熱導率量測................................................................................................... 28
2.2 材料分析 .................................................................................................................. 29
2.2.1 掃描式電子顯微鏡....................................................................................... 29
2.2.2 X 光繞射儀................................................................................................... 31
2.3 單一元件輸出電性量測 .......................................................................................... 33
第三章、實驗方法與步驟..................................................................................................... 35
3.1 前言 .......................................................................................................................... 35
3.2 製程開發步驟 .......................................................................................................... 36
3.3 Mg2Si0.4Sn0.6實驗流程............................................................................................. 37
3.4 Mg2Si0.4Sn0.6製程步驟............................................................................................. 39
3.4.1 P-type Si 粉摻雜製備................................................................................... 39
3.4.2 Mn5Si3粉末製備........................................................................................... 43
3.4.3 試片製程步驟............................................................................................... 45
3.5 Mg2Si+ Mg2Sn 實驗流程......................................................................................... 47
3.6 Mg2Si+ Mg2Sn 製程步驟......................................................................................... 48
3.6.1 Mg2Si 粉末製備 ........................................................................................... 48
3.6.2 Mg2SnAg0.02粉末製備.................................................................................. 52
3.6.3 Mg2Si0.4Sn0.6試片製備 ................................................................................. 55
3.7 單一元件輸出製備 .................................................................................................. 56
VII
第四章、實驗結果與討論..................................................................................................... 59
4.1 P-type Si 粉製備之參數測試................................................................................... 59
4.1.1 Si 粉摻雜 Al 測試分析 ................................................................................ 59
4.1.2 摻雜 B2O3及 Al 比較................................................................................... 63
4.2 Mg2Si0.4Sn0.6試片結構及熱電特性分析................................................................. 64
4.2.1 改變不同 Mg 的比例之特性分析 .............................................................. 64
4.2.2 加入不同比例的 Mn5Si3 ............................................................................. 66
4.2.3 800℃高溫燒結試片夾與不夾 C 型夾........................................................ 67
4.2.4 800℃高溫燒結過程中全程通入氮氣或氫氣............................................. 69
4.2.5 測試不同摻雜的 P-type Si 粉之 MgSiSn 試片.......................................... 70
4.2.6 400℃高溫退火通入氫氣與否..................................................................... 73
4.3 Mg2Si+ Mg2Sn 試片實驗結果................................................................................. 76
4.3.1 Mg2SnAg0.02粉末製備之參數測試分析...................................................... 76
4.3.2 試片結構分析............................................................................................... 80
4.3.3 試片熱電特性分析....................................................................................... 82
4.3.5 單一元件輸出電性分析............................................................................... 85
第五章、結論與未來展望..................................................................................................... 90
第六章、參考文獻................................................................................................................. 91
參考文獻 [1] 陳洋元. https://www.phys.sinica.edu.tw/~lowtemp/research.htm
(accessed.
[2] 葉建宏, "固態熱電材料再廢熱回收領域之應用," in "工業技術
研究院," 2014. [Online]. Available:
https://cc3.asia.edu.tw/ezfiles/6/1006/img/235/210886578.pdf
[3] L. Chen et al., "Miscibility gap and thermoelectric properties of
ecofriendly Mg2Si1− xSnx (0.1≤ x≤ 0.8) solid solutions by flux
method," Journal of Materials Research, vol. 26, no. 24, pp. 3038-
3043, 2011.
[4] J. de Boor, A. Berche, and P. Jund, "Density of States Effective
Mass for p-Type Mg2Si–Mg2Sn Solid Solutions: Comparison
between Experiments and First-Principles Calculations," The
Journal of Physical Chemistry C, vol. 124, no. 28, pp. 14987-
14996, 2020.
[5] N. Savvides and H. Chen, "Thermal conductivity and other
transport properties of Mg 2 Sn: ag crystals," Journal of electronic
materials, vol. 39, no. 9, pp. 2136-2141, 2010.
[6] 范惠雯, "以金屬奈米粒子調變 P 型鎂矽錫熱電材料之研究及模
組製作," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2020.
[Online]. Available: https://hdl.handle.net/11296/9985a5
[7] 辜泓智, "鎂矽錫熱電材料之製程研究及模組製作," 碩士, 電機
工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available:
https://hdl.handle.net/11296/rwv596
[8] 陳洋元、陳正龍. "熱電於再生能源之運用." https://pb.pstaiwan.org/catalog/ins.php?index_m1_id=5&index_id=548
(accessed.
[9] "熱電效應."
92
https://www.itsfun.com.tw/%E7%86%B1%E9%9B%BB%E6%95
%88%E6%87%89/wiki-6134906-9341885 (accessed.
[10] 百度百科. "熱電材料."
https://baike.baidu.com/item/%E7%83%AD%E7%94%B5%E6%9
D%90%E6%96%99/7704462 (accessed.
[11] 李守仁、白立文. "熱電材料研究最新動向."
https://www.materialsnet.com.tw/DocView.aspx?id=14979
(accessed.
[12] 吳欣潔、鄧評元、顏婉婷、蔡挹芬. "熱電材料相圖研究與應
用." https://www.materialsnet.com.tw/DocView.aspx?id=37795
(accessed.
[13] 鄭亦修、葉世弘、余文凱、林岳進、江敏誌, "熱電晶片發電效
能的探討及應用." [Online]. Available:
http://ir.hust.edu.tw/bitstream/310993100/5573/1/%E7%86%B1%
E9%9B%BB%E6%99%B6%E7%89%87%E7%99%BC%E9%9B
%BB%E6%95%88%E8%83%BD%E7%9A%84%E6%8E%A2%E
8%A8%8E%E5%8F%8A%E6%87%89%E7%94%A8-
%E8%AB%96%E6%96%87.pdf
[14] 黃振東、徐振庭, "熱電材料," 2013. [Online]. Available:
https://ejournal.stpi.narl.org.tw/sd/download?source=10206-
09.pdf&vlId=B6846D84-150C-4DB5-BFBE59E2D8B370B2&nd=1&ds=1
[15] S. Kim, B. Wiendlocha, H. Jin, J. Tobola, and J. P. Heremans,
"Electronic structure and thermoelectric properties of p-type Agdoped Mg2Sn and Mg2Sn1-xSix (x= 0.05, 0.1)," Journal of
Applied Physics, vol. 116, no. 15, p. 153706, 2014.
[16] V. Zaitsev et al., "Highly effective Mg 2 Si 1− x Sn x
thermoelectrics," Physical Review B, vol. 74, no. 4, p. 045207,
2006.
[17] yuanyukun888. "環境友好高性能低成本 Mg2Si 基熱電材料."
93
http://www.cailiaoniu.com/74862.html (accessed.
[18] X. Tan, W. Liu, H. Liu, J. Shi, X. Tang, and C. Uher, "Multiscale
calculations of thermoelectric properties of n-type Mg 2 Si 1− x Sn
x solid solutions," Physical Review B, vol. 85, no. 20, p. 205212,
2012.
[19] P. Gao, X. Lu, I. Berkun, R. D. Schmidt, E. D. Case, and T. P.
Hogan, "Reduced lattice thermal conductivity in Bi-doped Mg2Si0.
4Sn0. 6," Applied Physics Letters, vol. 105, no. 20, p. 202104,
2014.
[20] R. Song, T. Aizawa, and J. Sun, "Synthesis of Mg2Si1− xSnx solid
solutions as thermoelectric materials by bulk mechanical alloying
and hot pressing," Materials Science and Engineering: B, vol. 136,
no. 2-3, pp. 111-117, 2007.
[21] J.-H. Bahk, Z. Bian, and A. Shakouri, "Electron transport modeling
and energy filtering for efficient thermoelectric Mg 2 Si 1− x Sn x
solid solutions," Physical Review B, vol. 89, no. 7, p. 075204,
2014.
[22] X. Tang et al., "Improving thermoelectric performance of p-type
Ag-doped Mg2Si0. 4Sn0. 6 prepared by unique melt spinning
method," Applied Thermal Engineering, vol. 111, pp. 1396-1400,
2017.
[23] M. Yasseri et al., "Solid solution formation in Mg2 (Si, Sn) and
shape of the miscibility gap," Acta Materialia, vol. 185, pp. 80-88,
2020.
[24] "熱分析與熱傳導之比熱量測試技術分析."
https://www.techmark-asia.com/blog/20190611-principle
(accessed.
[25] 維基百科. "阿基米德浮體原理."
https://zh.wikipedia.org/wiki/%E9%98%BF%E5%9F%BA%E7%
B1%B3%E5%BE%B7%E6%B5%AE%E9%AB%94%E5%8E%9
F%E7%90%86 (accessed.
[26] 維基百科. "熱導率."
https://zh.wikipedia.org/wiki/%E7%86%B1%E5%B0%8E%E7%8
E%87 (accessed.
[27] 國立高雄第一科技大學機械系,
94
"http://www2.nkfust.edu.tw/~jcyu/Course/sem.pdf." [Online].
Available: http://www2.nkfust.edu.tw/~jcyu/Course/sem.pdf
[28] 國立交通大學. [Online]. Available:
https://ir.nctu.edu.tw/bitstream/11536/39886/1/950302.pdf
[29] 郭瀚介工程師. "SEM 的微觀世界."
https://gsmat10002.weebly.com/sem303402449435264199903002
8.html (accessed.
[30] SlideServe. "電磁波基本性質實驗."
https://www.slideserve.com/mohammed-jalila/6024074 (accessed.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2021-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明