博碩士論文 108521105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:52.14.32.113
姓名 黃于洲(Yu-Chou Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於導數尖波及型態學方法提取有效想像運動腦波
(Extract effective imaginary motion brain waves based on derivative spike and morphology method)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-16以後開放)
摘要(中) 本論文基於導數有效想像運動法及型態學法來針對原始想像運動做有效區間判斷,並利用動態時間規畫法來進行有效想像運動時間點的驗證。會利用腦波試驗段中樣本數的特性做有效想像運動開始點的判斷,根據訊號的形狀,峰值,維持時間,通道間訊號的關聯性來進行有效想像運動演算法的計算。
將原始腦波訊號做完資料擷取的部分後,便送入三種機器學習分類器中分別做想像運動辨識率的判斷,目的是嘗試觀察是否會因不同分類器而造成不同效果回饋。最後判斷的分類效果才能成為有效命令給予腦機介面做判斷。
資料集的部分在公開資料集中提升辨識效率達到5.61%,而在非公開資料集的部分提升辨識效率達到5.93%,因此不僅可以有效降低資料樣本數的個數,亦可以使最後判定辨識率達到優化的效果。
摘要(英) The thesis is based on the derivative effective imaginary movement method and morphology method to judge the effective interval of the original imaginary movement. Moreover, the thesis uses the dynamic time warping method to verify the effective imaginary movement time point. The characteristics of the number of samples in the brain wave test segment will be used to determine the starting point of the effective imaginary movement. Then, the effective imaginary movement algorithm will be calculated according to the shape of the signal, the peak value, the maintenance time, and the correlation of the signal between channels.
Once the original signal (Electroencephalography) is collected from the data, three machine learning classifiers can be used to judge the classification rate of the imaginary motion respectively. The purpose is to observe whether different classifiers will cause different effects. The classification effect of the final judgment can become a valid command for the BCI (Brain Computer Interface) to make judgments.
The part of the data set improves the identification efficiency in the public data set about 5.61%; and the part of the non-public data set improves the identification efficiency about 5.93%. Therefore,it not only effectively reduces the number of data samples , but also optimizes the final identification rate.
關鍵字(中) ★ 型態學法
★ 動態時間規畫法
★ 機器學習分類器
★ 導數有效想像運動法
★ 腦機介面
關鍵字(英) ★ morphology method
★ Dynamic time warping
★ machine learning classifier
★ derivative effective imaginative movement method
★ brain-computer interface
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-3-1 事件相關去同步 ……………………………………………… 4
1-3-2 尖波腦波偵測方法…………………………………………… 5
1-3-3 常用分類器…………………………………………………...12
1-4 內容大綱 14
第二章 腦波資料 15
2-1 大腦功能區域 15
2-2 腦波頻段特性 15
2-3 EEG資料庫 17
2-3-1 BCI 競賽資料庫 17
2-3-2 想像運動非公開資料庫……………………………………….18
2-3-3 自行錄製資料庫 18
第三章 演算法介紹 20
3-1 想像運動區間最佳EEG訊號起始點偵測 20
3-2 導數尖波法…………………………………………………………...25
3-3 型態學法 32
3-4 最佳EEG訊號起始點偵測………………………………………....39
3-5 動態時間規劃驗證有效偵測………………………………………..44
3-6 有效想像運動偵測後分類…………………………………………..51
3-6-1 支持向量機 51
3-6-2 線性判別分析 53
3-6-3 隨機森林……………………………………………… …….56
3-7 機率方法實踐………………………………………………………..57
3-7-1 窗口步長隨機方法…………………………………………...57
3-7-2 隨機樣本分類方法…………………………………………...59
第四章 偵測最佳EEG訊號實驗結果與探討 60
4-1 有效想像運動分類架構 60
4-2 演算法架構 61
4-3 實驗結果 63
4-3-1 BCI競賽資料庫 64
4-3-2 非公開想像資料庫 67
4-3-3 演算法架構分類準確度比較 71
4-3-3-1 BCI競賽資料庫……………………………………..71
4-3-3-2 非公開想像資料庫…………………………………74
4-3-3-3 比較公開及非公開資料庫…………………………76
4-3-4 驗證有效腦波資料庫………………………………………...77
4-3-5 時間序列有效腦波偵測方法比較…………………………...77
4-3-6 機率方法實踐結果…………………………………………...80
第五章 偵測想像運動實驗結果與應用 83
5-1 系統運算架構 83
5-2 狀態偵測閥值訓練與測試 85
5-3 測試結果 87
第六章 結論與未來展望 89
6-1 結論 89
6-2 未來展望 89
參考文獻 90
參考文獻 [1] S. Park and S. Lee, "Small Sample Setting and Frequency Band Selection
Problem Solving Using Subband Regularized Common Spatial Pattern , " in
IEEE Sensors Journal, vol. 17, no. 10, pp. 2977-2983, 15 May15, 2017, doi:
10.1109/JSEN.2017.2671842.
[2] S. Sablok, G. Gururaj, N. Shaikh, I. Shiksha and A. R. Choudhary, "Interictal
Spike Detection in EEG using Time Series Classification," 2020 4th International
ConferenceIntelligentComputingandControlSystems(ICICCS),2020,pp.644-647,
doi:10.1109/ICICCS48265.2020.9120928.
[3] A. Satti, C. Guan, D. Coyle and G. Prasad, "A Covariate Shift Minimisation
Method to Alleviate Non-stationarity Effects for an Adaptive Brain-Computer
Interface," 2010 20th International Conference on Pattern Recognition, 2010, pp.
105-108, doi: 10.1109/ICPR.2010.34.
[4] A. Abidi, I. Nouira and M. H. Bedoui, "Parallel Implementation on GPU for
EEG Artifact Rejection by Combining FastICA and TQWT," 2018 IEEE/ACS
15th International Conference on Computer Systems and Applications
(AICCSA), 2018, pp. 1-8, doi: 10.1109/AICCSA.2018.8612838.
[5] P. Durongbhan et al., "A Dementia Classification Framework Using Frequency
and Time-Frequency Features Based on EEG Signals," in IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 27, no. 5, pp. 826-835, May
2019, doi: 10.1109/TNSRE.2019.2909100.
[6] M. Nakanishi, Y. Wang, X. Chen, Y. -T. Wang, X. Gao and T. -P. Jung,
"Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using
Task-Related Component Analysis," in IEEE Transactions on Biomedical
Engineering,vol.65,no.1,pp.104-112,Jan.2018,doi:10.1109/TBME.2017.2694818.
[7] S. Chaudhary, S. Taran, V. Bajaj and A. Sengur, "Convolutional Neural Network
Based Approach Towards Motor Imagery Tasks EEG Signals Classification," in
90
IEEE Sensors Journal, vol. 19, no. 12, pp. 4494-4500, 15 June15, 2019, doi:
10.1109/JSEN.2019.2899645.
[8] H. Yu, H. Lu, S. Wang, K. Xia, Y. Jiang and P. Qian, "A General Common
Spatial Patterns for EEG Analysis With Applications to Vigilance Detection," in
IEEEAccess,vol.7,pp.111102-111114,2019,doi: 10.1109/ACCESS.2019.2934519.
[9] A. Satti, C. Guan, D. Coyle and G. Prasad, "A Covariate Shift Minimisation
Method to Alleviate Non-stationarity Effects for an Adaptive Brain-Computer
Interface," 2010 20th International Conference on Pattern Recognition, 2010, pp.
105-108, doi: 10.1109/ICPR.2010.34.
[10]Y. Jiang, N. T. Hau and W. Chung, "Semi Asynchronous BCI Using Wearable
Two-Channel EEG," in IEEE Transactions on Cognitive and Developmental
Systems,vol.10,no.3,pp. 681-686, Sept. 2018, doi: 10.1109/TCDS.2017.2716973.
[11]W. Mardini, M. M. Bani Yassein, R. Al-Rawashdeh, S. Aljawarneh, Y.
Khamayseh and O. Meqdadi, "Enhanced Detection of Epileptic Seizure Using
EEG Signals in Combination With Machine Learning Classifiers," in IEEE
Access,vol.8, pp. 24046-24055, 2020, doi: 10.1109/ACCESS.2020.2970012.
[12]M. A. Ali, D. Üçüncü, P. K. Ataş and S. Özöğür-Akyüz, "Classification of Motor
Imagery Task by Using Novel Ensemble Pruning Approach," in IEEE
Transactions on Fuzzy Systems, vol. 28, no. 1, pp. 85-91, Jan. 2020, doi:
10.1109/TFUZZ.2019.2900859.
[13]H. Ramoser, J. Muller-Gerking and G. Pfurtscheller, "Optimal spatial filtering of
single trial EEG during imagined hand movement," in IEEE Transactions on
Rehabilitation Engineering, vol. 8, no. 4, pp. 441-446, Dec. 2000, doi:
10.1109/86.895946.
[14]B.J.Edelman,B.Baxter and B. He, "EEG Source Imaging Enhances the Decoding
of Complex Right-Hand Motor Imagery Tasks," in IEEE Transactions on
Biomedical Engineering, vol. 63, no. 1, pp. 4-14, Jan. 2016, doi:
10.1109/TBME.2015.2467312.
91
[15]M. Dobiáš and J. Št′astný, "Movement EEG classification using parallel Hidden
Markov Models," 2016 International Conference on Applied Electronics (AE),
2016, pp. 65-68, doi: 10.1109/AE.2016.7577243.
[16]Y. Yao, J. Chang and K. Xia, "A Case of Parallel EEG Data Processing upon a
Beowulf Cluster,"2009 15th International Conference on Parallel and Distributed
Systems, 2009, pp. 799-803, doi: 10.1109/ICPADS.2009.65.
[17]C. Brunner, R. Leeb, G. R. Müller − Putz, A. Schlögl, and G. Pfurtscheller,
“BCI Competition 2008 – Graz data set A,” Institute for Human-Computer
Interfaces, Graz University of Technology, 2008
[18]P. Gaur, H. Gupta, A. Chowdhury, K. McCreadie, R. B. Pachori and H. Wang, "A
Sliding Window Common Spatial Pattern for Enhancing Motor Imagery
Classification in EEG-BCI," in IEEE Transactions on Instrumentation and
Measurement , vol. 70, pp. 1-9, 2021, Art no. 4002709, doi:
10.1109/TIM.2021.3051996.
[19]B. Abbaszadeh and M. C. E. Yagoub, "Optimum Window Size and Overlap for
Robust Probabilistic Prediction of Seizures with iEEG," 2019 IEEE Conference on
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) ,
2019, pp. 1-5, doi: 10.1109/CIBCB.2019.8791450.
[20]T. Yamauchi, K. Xiao, C. Bowman and A. Mueen, "Dynamic time warping: A
single dry electrode EEG study in a self-paced learning task," 2015 International
Conference on Affective Computing and Intelligent Interaction (ACII) , 2015, pp.
56-62, doi: 10.1109/ACII.2015.7344551.
[21]Y. Wang, W. Chen, K. Huang and Q. Gu, "Classification of neonatal
amplitude-integrated EEG using random forest model with combined feature," 2013
IEEE International Conference on Bioinformatics and Biomedicine , 2013, pp.
285-290, doi: 10.1109/BIBM.2013.6732504.
指導教授 徐國鎧 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明