博碩士論文 108521129 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:3.145.18.3
姓名 李弦恩(HSIEN-EN LI)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基板合成波導濾波型環形耦合器之設計與研究
(Design and Research of Substrate Integrated Waveguide Filtering Rat-Race Coupler)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 四通道可切換式帶通濾波器之研究★ 雙模態寬阻帶之基板合成波導濾波器
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-1以後開放)
摘要(中) 本論文介紹一種使用了基板合成波導(Substrate Integrated Waveguide)電路結構的三階濾波型環形耦合器(Filtering rat-race coupler),中心頻設計在10.2 GHz,此電路將帶通濾波器與環形耦合器兩種元件合併成一個,相較於傳統環形耦合器需要與帶通濾波器串接,面積能夠大幅度的縮小,整體電路大約為4.6 mm  5.17 mm。另外使用兩種提升通帶外側頻率選擇度的方法。
第一個電路由外圍四個TM010 mode的共振腔與中心一個TM110 mode共振腔所組成,利用水平TM 110模態與垂直TM 110模態互相正交與電場分布的特性,並且將四個輸入輸出端口以及耦合窗擺放位置特別設計,如此便可實現環形耦合器所需的高隔離度與輸出訊號相同相位與相反相位的架構。
第二個電路為在三階基板合成波導濾波型環形耦合器之第一與第三共振腔間增加一個耦合窗(coupling window),使輸入訊號分成兩路訊號,一路訊號為原有路徑,另外一路訊號由第一個共振腔經由新加的耦合窗耦合至輸出端口,兩路訊號大小相同,相位呈現180度的相位差,因此在通帶右側(10.91 GHz)產生一個傳輸零點,使高頻的選擇度更好。
第三個電路運用具有地平面的共面波導(Grounded coplanar line, GCPW)結構,將原有透過耦合窗的磁耦合,改變為混和耦合,使得原有的傳輸零點能夠在通帶左側,以增加低頻選擇度。藉由改變共面波導的參數與耦合窗的大小,可以使傳輸零點位置自由改變,以增加電路設計的自由度。
摘要(英) This thesis introduces a substrate integrated waveguide third-order filtering rat-race coupler. The center frequency of passband is 10.2 GHz. To miniaturize the circuit size, a better design is to integrate the rat-race and BPFs into a single component. The overall circuit size is 4.6  5.17 mm2 . In addition, two methods to improve the frequency selectivity are proposed.
The first circuit consists of four TM010 mode resonators and a TM110 mode resonator. Using the characteristics of the E-fields at horizontal TM110 and the vertical TM 110 orthogonal degenerate modes. The four input / output ports and the location of the coupling window are specially designed. Thus high isolation and in-phase and out-of-phase signal can be realized.
The second circuit adds a coupling window between the first and third resonant cavity of the substrate integrated waveguide third-order filtering rat-race coupler. Therefore, the input signal is divided into two. The signal through original path cancels out the signal through the new coupling window. Therefore, a transmission zero located at 10.91 GHz, which makes the high frequency selectivity better.
The third circuit is a substrate integrated waveguide third-order filtering rat-race coupler using a grounded-coplanar line (GCPW) etched on the upper face. Therefore, a transmission zero located at 9.97 GHz, which makes the low frequency selectivity better and allows more possibilities of design.
關鍵字(中) ★ 基板合成波導
★ 環形耦合器
★ 金屬通孔
關鍵字(英) ★ Substrate Integrated Waveguide
★ Rat-Race Coupler
★ via holes
論文目次 目錄
國 立 中 央 大 學 1
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 3
第2章 利用基板合成波導濾設計帶通濾波器 4
2.1 帶通濾波器基本設計原理 4
2.2 方形基板合成波導濾波器 12
2.3 圓形基板合成波導濾波器 17
第3章 運用基板合成波導設計濾波型環形耦合器 23
3.1 環形耦合器基本原理及架構 23
3.2 利用退化正交模態設計濾波型環形耦合器 25
3.3 濾波型環形耦合器模擬及量測 39
第4章 具有傳輸零點之濾波型環形耦合器 49
4.1 利用耦合窗在通帶右側產生傳輸零點 49
4.2 利用具有地平面的共面波導產生傳輸零點 55
第5章 結論 69
參考文獻 71
參考文獻 [1] C. Y. Pon, "Hybrid-ring directional coupler for arbitrary power divisions," IEEE Trans. Mi crow. Theory Tech., vol. 9, no. 6, pp. 529-535, November 1961.
[2] J. Reed and G. J. Wheeler, "A method of analysis of symmetrical four-port networks," IEEE Trans. Microw. Theory Tech., vol. 4, no. 4, pp. 246-252, October 1956.
[3] E. M. T. Jones, "Coupled-strip-transmission-line filters and directional couplers," IEEE Trans. Microw. Theory Tech., vol. 4, no. 2, pp. 75-81, April 1956.
[4] S. M. Mousavi, S. A. Mirtaheri, M. A. Khosravani-Moghaddam, B. Habibi and J. S. Meiguni, "Design, fabrication and test of a broadband high directivity directional coupler," 23rd Iranian Conference on Electrical Engineering, pp. 168-170, May 2015.
[5] H. Ghali and T. Moselhy, "Design of fractal rat-race coupler," IEEE MTT-S International Microwave Symposium Digest, vol.1, pp. 323-326, June 2004.
[6] H. Ghali and T. A. Moselhy, "Miniaturized fractal rat-race, branch-line, and coupled-line hybrids," IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2513-2520, November 2004.
[7] Yi-Chyun Chiou, Juo-Shiuan Wu and Jen-Tsai Kuo, "Periodic stepped-impedance rat race coupler with arbitrary power division," Asia-Pacific Microwave Conference, pp. 663-666, December 2006.
[8] J. Kuo, Y. Chiou and J. Wu, "Miniaturized rat race coupler with microstrip-to-CPW broadside-coupled structure and stepped-impedance sections," IEEE/MTT-S International Microwave Symposium, pp. 169-172, June 2007.
[9] K. Wang, X. Y. Zhang, S. Y. Zheng and Q. Xue, "Compact filtering rat-race hybrid with wide stopband," IEEE Trans. Microw. Theory Tech., vol. 63, no. 8, pp. 2550-2560, August 2015.
[10] Lu, Y.-L., Wang, Y., Hua, C., et al. “Design of compact filtering rat-race hybrid with λ/2-resonators”, Electron. Lett., pp. 1780-1782, July 2016.
[11] C. Chen, J. Li, G. Wang, K. Zhou and R. Chen, "Design of compact filtering 180-degree hybrids with arbitrary power division and filtering response," IEEE Access, vol. 7, pp. 18521-18530, February 2019.
[12] C. Lin and J. Kuo, "Compact eighth-order microstrip filtering coupler," IEEE Asia Pacific Microwave Conference (APMC) , pp. 806-808, November 2017.
[13] H. Uchida, N. Yoneda, Y. Konishi and S. Makino, "Bandpass directional couplers with electromagnetically-coupled Rresonators," IEEE MTT-S International Microwave Symposium Digest, pp. 1563-1566, June 2006.
[14] J. Xu, X. Y. Zhang and H. Li, "Compact narrowband filtering rat-race coupler using quad-mode dielectric resonator," IEEE Trans. Microw. Theory Tech., vol. 66, no. 9, pp. 4029-4039, September 2018.
[15] S. Y. Zheng, Y. X. Zheng and Y. F. Pan, "Dielectric coupler with bandpass filtering response," IEEE International Conference on Computational Electromagnetics (ICCEM) , pp. 1-2, March 2018.
[16] T. Shen, T. Huang, C. Chen and R. Wu, "A laminated waveguide magic-T with bandpass filter response in multilayer LTCC," IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 584-592, March 2011.
[17] C. Wu and C. H. Chen, "Compact LTCC bandpass 180° hybrid using lumped single-to-differential and single-to-common bandpass filters," IEEE MTT-S International Microwave Symposium Digest, pp. 1473-1476, June 2009.
[18] B. Potelon, J. Bohorquez, J. Favennec, C. Quendo, E. Rius and C. Person, "Design of Ku-band filter based on substrate-integrated circular cavities (SICCs)," IEEE MTT-S International Microwave Symposium Digest, pp. 1237-1240, June 2006.
[19] B. Potelon, J. Favennec, C. Quendo, E. Rius, C. Person and J. Bohorquez, "Design of a substrate integrated waveguide (SIW) filter using a novel topology of coupling," IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 9, pp. 596-598, September 2008.
[20] S. Han, K. Zhou, J. Zhang, C. Zhou and W. Wu, "Novel substrate integrated waveguide filtering crossover using orthogonal degenerate modes," IEEE Microw. Wirel. Compon. Lett., vol. 27, no. 9, pp. 803-805, September 2017.
[21] K. Dhwaj, X. Li, Z. Shen and S. Qin, "Cavity resonators do the trick: A packaged substrate integrated waveguide, dual-band filter," IEEE Microw. Magazine, vol. 17, no. 1, pp. 58-64, January 2016.
[22] Y. Cassivi and K. Wu, "Low cost microwave oscillator using substrate integrated waveguide cavity," IEEE Microw. Wirel. Compon. Lett., vol. 13, no. 2, pp. 48-50, February 2003.
[23] Z. R. Omam, W. M. Abdel-Wahab, S. Gigoyan and S. Safavi-Naeini, "High Gain 4  4 SIW passive phased array antenna," IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 45-46, July 2020.
[24] P. Li, H. Chu, and R. S. Chen, “SIW magic-T with bandpass response,” Electronics Letters, vol. 51, no. 14, pp. 1078–1080, July 2015.
[25] H. Li, J. Xu and X. Y. Zhang, "Substrate integrated waveguide filtering rat-race coupler based on orthogonal degenerate modes," IEEE Trans. Microw. Theory Tech., vol. 67, no. 1, pp. 140-150, January 2019.
[26] D. Deslandes and K. Wu, "Millimeter-wave substrate integrated waveguide filters," Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology, pp. 1917-1920 vol.3, May 2003.
[27] X. Chen and K. Wu, "Substrate integrated waveguide filter: basic design rules and fundamental structure features," IEEE Microw. Magazine, vol. 15, no. 5, pp. 108-116, July 2014.
[28] Augustine O. Nwajana, Amadu Dainkeh, Kenneth S. K. Yeo "Substrate integrated waveguide (SIW) bandpass filter with novel microstrip-CPW-SIW input coupling," Electromagn. Appl. , June 2017.
[29] D. Deslandes and Ke Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 593-596, February 2003.
[30] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001.
[31] D. M. Pozar, Microwave Engineering, 4th Edition: Wiley, 2011.
[32] Microwave Engineering Rat-race Junction 取自https://www.tutorialspoint.com/microw-
ave_engineering /microwave_engineering_ratrace_junction.htm
指導教授 凃文化(Wen-Hua Tu) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明