博碩士論文 108521114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.22.248.247
姓名 陳品蓉(Pin-Rong Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以OPAL-RT硬體迴圈實現微電網之電壓回復控制
(Voltage Restoration Control of Microgrid with OPAL-RT Hardware in the Loop)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 本論文提出一種基於電池儲能系統的電壓回復控制,用於支撐電源供應與補償電壓。當市電受到干擾時,電壓回復是微電網電力控制的重要任務,其中一種干擾為輸電線路短路所引起,這可能會導致微電網電壓驟降,甚至是停電,為了解決這個問題,本論文提出遞迴式小波派翠模糊類神經網路控制器用於儲能系統的電壓回復控制,來加快響應速度並降低暫態衝擊。此外,為了檢驗太陽能光電系統是否符合低電壓穿越的要求,及探討電壓回復控制的性能,而以建在台灣澎湖群島的七美島微電網進行研究。微電網中的太陽能光電系統、儲能系統和風力發電機分別透過獨立的升壓變壓器連接到同一責任分界點;柴油發電機提供主要的電力來源並形成獨立的微電網。本論文使用 OPAL-RT 即時模擬器與兩個浮點數位訊號處理器實現硬體迴圈架構,以驗證所提出控制器的有效性。
摘要(英) This study presents a voltage restoration control (VRC) based on battery energy storage system (BESS), which can be used for both a supporting power source and voltage compensation. Voltage restoration is an important task for the power control of microgrid during utility disturbances. One of the disturbances is caused by short circuit on power line of the microgrid, this may lead to voltage sag and even blackout of the microgrid system. To tackle this problem, the recurrent wavelet petri fuzzy neural network (RWPFNN) controller is proposed for the VRC of BESS to provide fast control response to mitigate the transient impact. Moreover, to examine compliance with the requirements of low voltage ride through (LVRT) for the photovoltaic (PV) plant and investigate the performance of the proposed VRC, the microgrid built in Cimei Island in Penghu Archipelago, Taiwan, is investigated. Furthermore, in this microgrid system, the PV plant, the BESS and the wind turbine generator (WTG) are connected to the same point of common coupling (PCC) with separated step-up transformers. In addition, the diesel generators provide the main power sources and form the isolated microgrid system. Through the hardware in the loop (HIL) mechanism built with OPAL-RT real-time simulator and implemented using two floating-point digital signal processors (DSPs), the effectiveness of proposed controllers can be verified and demonstrated.
關鍵字(中) ★ 電壓回復控制
★ 遞迴式小波派翠模糊類神經網路
★ 低電壓穿越
★ 微電網
★ 儲能系統
關鍵字(英)
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 本文貢獻 4
1.4 論文大綱 5
第二章 微電網與分散式電源介紹 6
2.1 微電網簡介 6
2.2 微電網規範 6
2.2.1 IEEE 1547-2003規範 6
2.3 微電網控制策略 7
2.3.1定功率控制 7
2.3.2分級控制 8
2.4 分散式電源介紹 10
2.4.1太陽能電池 10
2.4.2儲能系統 13
2.4.3風力發電機 15
第三章 系統架構與控制策略 17
3.1 三相座標軸轉換 17
3.1.1靜止座標軸 19
3.1.2同步旋轉座標軸 20
3.2 變流器之實虛功控制與電流控制 21
3.3 併網型再生能源之低電壓穿越探討 22
3.3.1故障型態種類 22
3.3.2正負序成分分析 23
3.3.3正負序成分偵測 26
3.3.4二階廣義積分器之鎖相迴路 28
3.3.5故障電壓偵測與低電壓穿越規範 29
3.4 電力系統架構與控制策略 32
3.4.1七美島電力系統架構 32
3.4.2太陽能光電系統之低電壓穿越控制 36
3.4.3電壓回復控制架構與策略 38
3.4.4風力發電機之控制 39
第四章 遞迴式小波派翠模糊類神經網路控制器設計 41
4.1 簡介 41
4.2 遞迴式小波派翠模糊類神經網路架構 41
4.3 遞迴式小波派翠模糊類神經網路之線上學習法則 45
4.4 遞迴式小波派翠模糊類神經網路收斂性分析 48
第五章 模擬結果 51
5.1 情境介紹 51
5.2 情境一之模擬結果 53
5.1 情境二之模擬結果 61
第六章 硬體迴圈規劃與實驗結果 69
6.1 簡介 69
6.2 即時模擬系統 69
6.2.1 即時模擬介紹 69
6.2.2 OP4510硬體 72
6.2.3 RT-LAB軟體 74
6.2.3.1 模型分割與命名 76
6.2.3.2 OpComm 77
6.2.3.3 Artemis Stubline 77
6.2.4 電路硬體處理器 78
6.3 硬體迴圈架構 80
6.4 數位訊號處理器 81
6.5 實驗結果 83
6.5.1 情境一之實驗結果 83
6.5.2 情境二之實驗結果 89
第七章 結論與未來展望 95
7.1 結論 95
7.2 未來展望 95
參考文獻 96
作者簡歷 106
參考文獻 [1] D. J. Cox and T. Davis, “Distributed generation and sensing for intelligent distributed microgrids,” in Proc. IEEE/SMC International Conf. System of Systems Engineering, Los Angeles, CA, pp. 5, 2006.
[2] 談光雄,「微電網之運轉與智慧型控制」,國防大學理工學院國防科學研究所,博士論文,2013年。
[3] R. H. Lasseter, “MicroGrids,” in Proc. IEEE Conf. Power Engineering Society Winter Meeting, New York, NY, USA, 2002, pp. 305-308 vol.1.
[4] P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” in Proc. IEEE Power Engineering Society General Meeting, Montreal, Que., pp. 8, 2006.
[5] F. Mumtaz and I. S. Bayram, “Planning, Operation, and Protection of Microgrids: An Overview,” 3rd International Conference on Energy and Environment Research (ICEER), Spain, pp. 94-100, Sept. 2016.
[6] Asian Development Bank, “Handbook on Microgrids for Power Quality and Connectivity,” Jul. 2020.
[7] C. Dufour and J. Bélanger, “On the Use of Real-Time Simulation Technology in Smart Grid Research and Development,” IEEE Trans. Industrial Electronics, vol. 50, no. 6, pp. 3963-3970, Nov./Dec. 2019.
[8] C. A. Caldeira, A. D. D. de Almeida, H. R. Schlickmann, C. S. Gehrke, and F. Salvadori, “Impact analysis of the BESS insertion in electric grid using real-time simulation,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. - Latin America (ISGT Latin America), Gramado, Brazil, pp. 1-6, 2019.
[9] K. S. Amitkumar, P. Pillay, and J. Bélanger, “An Investigation of Power-Hardware-in-the-Loop-Based Electric Machine Emulation for Driving Inverter Open-Circuit Faults,” IEEE Trans. Transportation Electrification, vol. 7, no. 1, pp. 170-182, Mar. 2021.
[10] N. Nasser and M. Fazeli, “Buffered-Microgrid Structure for Future Power Networks; a Seamless Microgrid Control,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 131-140, Jan. 2021.
[11] A. Hirsch, Y. Parag, and J. Guerrero, “Microgrids: A review of technologies, key drivers, and outstanding issues,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 402-411, Jul. 2018.
[12] J. Liu, J. Li, H. Song, A. Nawaz, and Y. Qu, “Nonlinear secondary voltage control of islanded microgrid via distributed consistency,” IEEE Trans. Energy Convers., vol. 14, no. 8, pp. 1-8, Feb. 2020.
[13] C. Li, J. Yang, Y. Xu, Y. Wu, and P. Wei, “Classification of voltage sag disturbance sources using fuzzy comprehensive evaluation method,” CIRED-Open Access Proc. J., vol. 2017, no. 1, pp. 544-548, Oct. 2017.
[14] S. M. Mohiuddin and J. Qi, “Droop-free distributed control for AC microgrids with precisely regulated voltage variance and admissible voltage profile guarantees,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 1956-1967, May, 2020.
[15] E.ON Netz GmBH, “Grid Connection Regulations for High and Extra High Voltage,′′ Status: 1, Apr. 2006.
[16] M. Nasiri and R. Mohammadi, “Peak Current Limitation for Grid Side Inverter by Limited Active Power in PMSG-Based Wind Turbines During Different Grid Faults,” IEEE Trans. Sustainable Energy, vol. 8, no. 1, pp. 3-12, Jan. 2017.
[17] A. Mojallal and S. Lotfifard, “Enhancement of Grid Connected PV Arrays Fault Ride Through and Post Fault Recovery Performance,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 546-555, Jan. 2019.
[18] A. Calle-Prado, S. Alepuz, J. Bordonau, J. Nicolas-Apruzzese, P. Cortés, and J. Rodriguez, “Model Predictive Current Control of Grid-Connected Neutral-Point-Clamped Converters to Meet Low-Voltage Ride-Through Requirements,” IEEE Trans. Power Electron., vol. 62, no. 3, pp. 1503-1514, Mar. 2015.
[19] Y. Jiang, C. Qin, X. Xing, X. Li, and C. Zhang, “A Hybrid Passivity-Based Control Strategy for Three-Level T-Type Inverter in LVRT Operation,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 4009-4024, Dec. 2020.
[20] S. M. Muyeen, “Acombined approach of using an SDBR and a STATCOM to enhance the stability of a wind farm,” IEEE Syst. J., vol. 9, no. 3, pp. 922-932, Sep. 2015.
[21] W. G. Lee, T. T. Nguyen, H. J. Yoo and H. -M. Kim, “Low-Voltage Ride-Through Operation of Grid-Connected Microgrid Using Consensus-Based Distributed Control,” Energies, vol. 11, no. 11, pp. 2867-2884, Oct. 2018.
[22] F. M. Mahdianpoor, R. A. Hooshmand, and M. Ataei, “A new approach to multifunctional dynamic voltage restorer implementation for emergency control in distribution systems,” IEEE Trans. Power Del., vol. 26, no. 2, pp. 882-890, Apr. 2011.
[23] P. T. Ogunboyo, R. Tiako, and I. E. Davidson, “Effectiveness of dynamic voltage restorer for unbalance voltage mitigation and voltage profile improvement in secondary distribution system,” Canadian J. Elect. Comput. Eng., vol. 41, no. 2, pp. 105-115, Spring 2018.
[24] A. Benali, M. Khiat, T. Allaoui, and A. M. Denai, “Power Quality Improvement and Low Voltage Ride Through Capability in Hybrid Wind-PV Farms Grid-Connected Using Dynamic Voltage Restorer,” IEEE Access, vol. 6, pp. 68634-68648, Nov. 2018.
[25] T. Kandil and M. A. Ahmed, “Control and Operation of Dynamic Voltage Restorer With Online Regulated DC-Link Capacitor in Microgrid System,” Canadian J. Elect. Comput. Eng., vol. 43, no. 4, pp. 331-341, Fall 2020.
[26] H. S. Krishnamoorthy, D. Rana, P. Garg, P. N. Enjeti, and I. J. Pitel, “Wind Turbine Generator–Battery Energy Storage Utility Interface Converter Topology With Medium-Frequency Transformer Link,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4146-4155, Aug. 2014.
[27] S. Prakash and S. Mishra, “VSC Control of Grid Connected PV for Maintaining Power Supply During Open-Phase Condition in Distribution Network,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 6211-6222, Dec. 2019.
[28] J. In´acio Y. Ota, T. Sato, and H. Akagi, “Enhancement of Performance, Availability, and Flexibility of a Battery Energy Storage System Based on a Modular Multilevel Cascaded Converter (MMCC-SSBC),” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2791-2799, Apr. 2016.
[29] D. Ranamuka, K. M. Muttaqi, and D. Sutanto, “Flexible AC Power Flow Control in Distribution Systems by Coordinated Control of Distributed Solar-PV and Battery Energy Storage Units,” IEEE Trans. Sustainable Energy, vol. 11, no. 4, pp. 2054-2062, Oct. 2020.
[30] V. M. Hrishikesan and K. Chandan, “Operation of Meshed Hybrid Microgrid During Adverse Grid Conditions With Storage Integrated Smart Transformer,” IEEE Open J. of the Ind. Electron. Soc., vol. 2, pp. 315-325, Apr. 2021.
[31] S. Y. Chen, Y. H. Hung, and S. S. Gong, “Speed control of vane-type air motor servo system using proportional-integral-derivative-based fuzzy neural network,” Int. J. Fuzzy Syst., vol. 18, no. 6, pp. 1065-1079, Dec. 2016.
[32] Y. Fang, J. Fei, and T. Wang, “Adaptive backstepping fuzzy neural controller based on fuzzy sliding mode of active power filter,” IEEE Access, vol. 8, pp. 96027-96035, Jun. 2020.
[33] Y. C. Hung, F. J. Lin, J. C. Hwang, J. K. Chang, and K. C. Ruan, “Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2350-2362, Apr. 2015.
[34] Y. Q. Lv, C. K. M. Lee, Z. Wu, H. K. Chan, and W. H. Ip,“Priority-based distributed manufacturing process modeling via hierarchical timed color petri net,” IEEE Trans. Ind. Inf., vol. 4, pp. 1836-1846, Nov. 2013.
[35] K. H. Tan, “Squirrel-cage induction generator system using wavelet petri fuzzy neural network control for wind power applications,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 5242-5254, Jul. 2016.
[36] F. J. Lin, I. F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1, pp. 153-167, Feb. 2016.
[37] S. Ganjefar and M. Tofghi, “Single-hidden-layer fuzzy recurrent wavelet neural network: Applications to function approximation and system identification,” Inf. Sci., vol. 294, pp. 269-285, Feb. 2015.
[38] C. C. Yeh, C. S. Chen, T. T. Ku, C. H. Lin, C. T. Hsu, Y. R. Chang, and Y. D. Lee, “Design of special protection system for an offshore island with high-PV penetration,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 947-953, Mar./Apr. 2017.
[39] T. T. Ku, C. S. Chen, C. T. Hsu, and C. H. Lin, “Enhancement of island microgrid transient stability by battery energy storage system,” IEEE Inter. J. Ind. Electro. and Elec. Eng. (IJIEEE), vol. 7, no. 1, pp. 46-50, Jan. 2019.
[40] F. J. Lin, C. I. Chen, G. D. Xiao, and P. R. Chen, “Voltage Stabilization Control for Microgrid with Asymmetric Membership Function Based Wavelet Petri Fuzzy Neural Network,” IEEE Trans. Smart Grids, early accessed, 2021.
[41] 洪穎怡,「微電網簡介」,台灣電力企業聯合會電子報第十二期,2019年8月。
[42] D. E. Olivares, A. M. Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. G. Bellmunt, M. Saeedifard, R. P. Behnke, G. A. J. Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, Jul. 2014.
[43] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[44] K. Yu, Q. Ai, S. Wang, J. Ni, and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, Mar. 2016.
[45] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 3, pp. 928–948, Sep. 2017.
[46] IEEE Standard 1547-2003, “IEEE Standard for interconnecting distributed resources with electric power systems,” IEEE Standard, New York, USA, pp. 1-16, 2003
[47] R. A. Badwawi, W. R. Issa, T. K. Mallick, and M. Abusara, “Supervisory control for power management of an islanded AC microgrid using a frequency signalling-based fuzzy logic controller,” IEEE Trans. Sustainable Energy, vol. 10, no. 1, pp. 94-104, Jan. 2019.
[48] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[49] Chapter 3 The Behaviour of Solar Cells.
[50] S. Nema, R. Nema and G. Agnihotri, “Matlab/simulink based study of photovoltaic cells/modules/array and their experimental verification,” International Journal of Energy and Environment (IJEE), vol. 1, no. 3, pp. 487-500, Jan. 2010.
[51] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications,” in Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, Jun. 2014.
[52] 陳彥豪、黃詩文、盧思穎,「儲能市場機會與台灣應用利基」,行政院原子能委員會核能研究所研究計畫,2015年9月。
[53] 謝錦隆,薛康琳,鍾岳霖,戴志揚,「臺灣風力發電與液流電池系統儲電情境模擬」,臺灣能源期刊第三卷第一期第55-78頁,2016年3月。
[54] X. Huang and B. Jiang, “Research on lithium battery energy storage system in wind power,” in Proc. International Conf. Electrical and Control Engineering, Yichang, pp. 1200-1203, 2011.
[55] J. Vergauwe, A. Martinez, A. Ribas, “Optimization of a wind turbine using permanent magnet synchronous generator (PMSG)” Renewable Energy & Power Quality Journal, Vol. 1, No.4, Apr. 2006.
[56] MATLAB/Simulink wind turbine.
[57] 黃仲欽,「交流電動機控制」,交流電動機課程講義,民國97年。
[58] 柯廷翰,「考慮配電系統三相故障之具低電壓穿越能力之智慧型太陽光電系統」,國立中央大學,碩士論文,2013年6月。
[59] 李軒宇,「具低電壓穿越能力之單級智慧型太陽能光電系統」,國立中央大學,碩士論文,2014年6月。
[60] C. Abbey and G. Joos, “Effect of Low Voltage Ride Through (LVRT) Characteristic on Voltage Stability,” IEEE Power Engineering Society General Meeting, pp. 1-7, 2005.
[61] 澎湖縣政府澎湖縣七美鄉公所,七美島地理位置。
[62] 林法正,陳彥豪,盧思穎,陳毓文,「澎湖群島智慧電網示範介紹」,國土及公共治理季刊第五卷第二期,2017年7月。
[63] NEP-Ⅱ第二期能源國家型科技計畫,智慧電網主軸中心107年度期末審查報告。
[64] 蕭果登,「以OPAL-RT硬體迴圈實現微電網之智慧型控制」,國立中央大學,碩士論文,2020年6月。
[65] 聯合再生能源股份有限公司,「D2K_H8A單晶太陽能模組」。
[66] N. S. Jayalakshmi, D. N. Gaonkar, and K. S. K. Kumar, “Dynamic modeling and performance analysis of grid connected PMSG based variable speed wind turbines with simple power conditioning system,” in Proc. IEEE International Conf. Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, pp. 1-5, 2012.
[67] H. K. Sharma, A. Samaria, and L. Gidwani, “Designing and performance analysis of controller for PMSG based wind energy conversion system,” in Proc. International Conf. Information, Communication, Instrumentation and Control (ICICIC), Indore, pp. 1-6, 2017.
[68] A. Rolan, A. Luna, G. Vazquez, D. Aguilar, and G. Azevedo, “Modeling of a variable speed wind turbine with a permanent magnet synchronous generator,” IEEE International Symposium on Industrial Electronics, Seoul, pp. 734-739, 2009.
[69] S. Sumathi, L. Kumar, and P. Surekha, “Green Energy and Technology Solar PV and Wind Energy Conversion Systems An Introduction to Theory, Modeling with MATLAB/SIMULINK, and the Role of Soft Computing Techniques,” 2015.
[70] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using takagi–sugeno–kang probabilistic fuzzy neural network control,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516–5528, Sep. 2015.
[71] J. Yuan, Y. Lei, L. Wei, C. Tian, B. Chen, and Z. Du, “A Novel Bridge-Type Hybrid Saturated-Core Fault Current Limiter Based on Permanent Magnets,” IEEE Trans. Magn., vol. 51, no. 11, pp. 1–4, Nov. 2015.
[72] H. Radmanesh, S. H. Fathi, G. B. Gharehpetian, and A. Heidary, “A Novel Solid-State Fault Current-Limiting Circuit Breaker for Medium-Voltage Network Applications,” IEEE Trans. Power Del., vol. 31, no. 1, pp. 236–244, Feb. 2016.
[73] H. Zhou, J. Yuan, F. Chen, and B. Chen, “Inductive Fault Current Limiters in VSC-HVDC Systems: A Review,” IEEE Access, vol. 8, pp. 38185–38197, Mar. 2020.
[74] J. Bélanger, P. Venne, and J. -N. Paquin, “The What, Where and Why of Real-Time Simulation,” ResearchGate, pp. 37-49, Jan. 2010.
[75] L. Ibarra, A. Rosales, P. Ponce, A. Molina, and R. Ayyanar, “Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment,” Energies, vol. 10, no. 817, Jun. 2017.
[76] 劉邦威,「應用即時模擬技術於交流微電網之建模與模擬」,國立中正大學,碩士論文,2012年7月。
[77] Opal-RT Technologies Inc., RT LAB Version 11.3, User’s Guide.
[78] OP4510使用教學,思渤科技,2019。
[79] L. Y. Lu, J. H. Liu, and C. C. Chu, “Distributed real-time simulation modeling and analysis of a micro-grid with renewable energy sources,” IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1-6, 2012.
[80] Opal-RT Technologies Inc., eHS User’s Guide.
[81] C. Dufour, S. Cense, T. Ould-Bachir, L. Grégoire, and J. Bélanger, “General-purpose reconfigurable low-latency electric circuit and motor drive solver on FPGA,” in Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society, Montreal, QC, pp. 3073-3081, 2012.
[82] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
指導教授 林法正 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明