博碩士論文 108521097 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.144.4.76
姓名 廖宸晧(Chen-Hao Liao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 智慧型最大功率因數搜尋控制之同步磁阻馬達驅動系統
(Intelligent Maximum Power Factor Searching Control for Synchronous Reluctance Motor Drive System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究為發展以人工智慧機器學習為基礎之高性能的同步磁阻馬達驅動系統,提出一種基於定子電阻和定子磁通估測的電流角控制器於新型最大功率因數控制。傳統的最大功率因數控制系統需藉由同步磁阻馬達的凸極比來產生電流角命令,由於凸極比需要離線的使用有限元素分析預先處理且無法自動調整,使得最大功率因數控制成本高又耗時,很難在不同的操作區域中提高性能。
有鑑於此,設計了一種基於遞迴式切比雪夫模糊類神經網路電流角控制器的智慧型最大功率因數搜尋控制於同步磁阻馬達的速度控制。為了能在不同的工作條件下線上搜索同步磁阻馬達的最佳功率因數點,設計了遞迴式切比雪夫模糊類神經電流角控制器以生成補償電流角命令。此外,採用比例積分速度控制器生成定子電流命令,以及本文採用的智慧型最大功率因數搜尋控制產生電流角指令。
本研究以32位元浮點運算數位訊號處理器TMS320F28075實現基於定子電阻和磁通估測的電流角控制器之智慧型最大功率因數搜尋控制於功率為4kW的同步磁阻馬達驅動系統。最後,通過實驗結過驗證了所提出的智慧型最大功率因數搜尋控制,能夠在不同的速度和負載的操作區間有效的線上搜尋最佳功率因數的電流角命令,並驗證其強健性和準確性。
摘要(英) To develop a high-performance synchronous reluctance motor (SynRM) drive system, a novel maximum power factor control (MPFC) using stator resistance and flux estimator is proposed. First, a traditional maximum power factor control (TMPFC) system using a saliency ratio to generate a fixed current angle command is described. Because the saliency ratio requires offline repreparation and cannot be adjusted automatically, it is difficult to improve the performance of the MPFC in different operating regions.
Therefore, an intelligent maximum power factor searching control (MPFSC) using a recurrent Chebyshev fuzzy neural network (RCFNN) controller is designed for the speed control of a SynRM. In order to search the online optimal power factor (PF) points of the SynRM, the RCFNN current angle controller is designed to generate the compensated current angle command. Moreover, a proportional-integral (PI) speed controller is employed to produce the stator current magnitude command, and the proposed system is adopted to generate the current angle command.
Furthermore, the proposed system is implemented in a 32-bit floating-point TMS320F28075 digital signal processor. Finally, from the experimental results, the optimal PF can be effectively searched online at different speed operating commands with varied load torque.
關鍵字(中) ★ 人工智慧機器學習
★ 定子電阻估測器
★ 定子磁通估測器
★ 最大功率因數搜尋控制
★ 功率因數
★ 遞迴式切比雪夫模糊類神經網路
★ 有限元素分析
★ 同步磁阻馬達
關鍵字(英) ★ mechine learning
★ stator resistance and flux estimator
★ maximum power factor searching control (MPFSC)
★ power factor (PF)
★ recurrent Chebyshev fuzzy neural network (RCFNN)
★ finite element analysis (FEA)
★ synchronous reluctance motor (SynRM)
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 7
1.3 論文貢獻 10
1.4 論文大綱 11
第二章 有限元素法分析同步磁阻馬達之特性 12
2.1 前言 12
2.2 Maxwell同步磁阻馬達模型 13
2.2.1 建立同步磁阻馬達之Maxwell 2D模型 14
2.2.2 ANSYS進階設定 18
2.3 有限元素法分析同步磁阻馬達結果與探討 23
2.3.1 同步磁阻馬達之磁通探討 23
2.3.2 同步磁阻馬達之電感探討 26
第三章 同步磁阻馬達驅動系統之控制板介紹 27
3.1 前言 27
3.2 TMS320F28075數位訊號處理器簡介 30
3.3 以DSP為基礎的同步磁阻馬達驅動系統 32
3.3.1 TMS320F28075 DSP控制板與其電路 33
3.3.1.1 電壓源轉換電路 34
3.3.1.2 數位/類比轉換之電壓準位轉換電路 34
3.3.2 輸入/輸出板 35
3.4 外部負載控制電路 38
第四章 同步磁阻馬達驅動系統 40
4.1 前言 40
4.2 同步磁阻馬達 43
4.3 同步磁阻馬達的數學動態模型 44
4.4 座標轉換之電壓及磁阻轉矩方程式 46
4.5 同步磁阻馬達控制架構 51
4.5.1 傳統最大功率因數控制 51
4.5.2 智慧型最大功率因數搜尋控制 56
第五章 定子電阻估測器與定子磁通估測器 59
5.1 前言 59
5.2 基於比例積分控制之定子電阻估測器 59
5.3 定子磁通估測器 60
第六章 遞迴式切比雪夫模糊類神經網路電流角控制器 62
6.1 前言 62
6.2 遞迴式切比雪夫模糊類神經網路 62
6.3 遞迴式切比雪夫模糊類神經網路之線上學習法則 67
6.4 遞迴式切比雪夫模糊類神經網路之收斂性分析 70
第七章 智慧型最大功率因數搜尋控制實驗結果與討論 73
7.1 前言 73
7.2 實驗結果 75
7.2.1 傳統最大功率因數控制(TMPFC) 75
7.2.2 比例積分電流角控制器之最大功率因數搜尋控制(PI-MPFSC) 78
7.2.3 智慧型最大功率因數搜尋控制(Intelligent-MPFSC) 81
7.3 實驗結果之討論 84
第八章 結論與未來展望 91
8.1 結論 91
8.2 未來展望 92
參考文獻 93
作者簡歷 103
參考文獻 參考文獻
[1] P. Waide and C. U. Brunner, Energy-Efficiency Policy Opportunities for Electric Motor-Drive Systems. Paris, France: International Energy Agency, 2011.
[2] G. K. Esen and E. Özdemir, “A new field test method for determining energy efficiency of induction motor,” IEEE Trans. Instrum. Meas., vol. 66, no. 12, pp. 3170-3179, Dec. 2017.
[3] A. T. D. Almeida, “Electric motors and variable speed drives efficiency – Adjusting MEPS to technology developments,” Motor Summit Zurich, 11/12, Oct. 2016.
[4] Rotating Electrical Machines—Part 30-1: Efficiency Classes of Line perated AC Motors (IE code) Machines, no. Edition 1.0, document IEC 60034-30-1, Int. Electrotech. Commission, 2014.
[5] M. Doppelbauer, “Update on IEC motor and converter standards,” 6th Int. Motor Summit for Energy Efficiency powered by Impact Energy, Oct. 2016.
[6] 黃雅琪,「永磁與磁阻馬達市場發展機會與挑戰」,機械工業雜誌,415期,2017年10月號。
[7] H. A. Zarchi, J. Soltani, and G. A. Markadeh, “Adaptive input-output feedback linearization-based torque control of synchronous reluctance motor without mechanical sensor,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 375–384, Jan. 2010.
[8] L. Ortombina, F. Tinazzi, and M. Zigliotto, “Magnetic modelling of synchronous reluctance and internal permanent magnet motors using radial basis function networks”, IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1140-1148, Feb. 2018.
[9] A. Yousefi-Talouki, P. Pescetto, and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598–3608, Jul./Aug. 2017.
[10] A. Yousefi-Talouki, P. Pescetto, G. Pellegrino, and I. Boldea, “Combined active flux and high-frequency injection methods for sensorless direct-flux vector control of synchronous reluctance machines,” IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2447–2457, Mar. 2018.
[11] N. Bianchi, S. Bolognani, E. Carraro, M. Castiello, and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762–4769, Nov./ Dec. 2016.
[12] O. Payza, Y. Demir, and M. Aydin, “Investigation of losses for a concentrated winding high-speed permanent magnet-assisted synchronous reluctance motor for washing machine application,” IEEE Trans. Magn., vol. 54, no. 11, Nov. 2018.
[13] P. Niazi, “Permanent magnet assisted synchronous reluctance motor design and performance improvement,” Ph.D. dissertation, Texas A&M Univ., College Station, TX, 2005.
[14] H. C. Liu and J. Lee, “Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3104–3114, Apr. 2018.
[15] F. Oliveira and A. Ukil, “Comparative performance analysis of induction & synchronous reluctance motors in chiller systems for energy efficient buildings”, IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4384–4393, Aug. 2019.
[16] J. Baek, S. S. R. Bonthu, and S. Choi, “Design of five-phase permanent magnet assisted synchronous reluctance motor for low output torque ripple applications,” IET Electr. Power Appl., vol. 10, no. 5, pp. 347–355, 2016.
[17] X. Zhang and G. H. B. Foo, ‘‘Overmodulation of constant-switching frequency-based DTC for reluctance synchronous motors incorporating field-weakening operation,’’ IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 37–47, Jan. 2019.
[18] M. N. Ibrahim, P. Sergeant, and E. M. Rashad, “Combined star-delta windings to improve synchronous reluctance motor performance,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1479–1487, Dec. 2016.
[19] R. Morales-Caporal and M. Pacas, “A predictive torque control for the synchronous reluctance machine taking into account the magnetic cross saturation,” IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1161–1167, Apr. 2007.
[20] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157–2166, Apr. 2015.
[21] A. Vagati, M. Pastorelli, G. Franceschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758–765, Jul./Aug. 1998.
[22] C. Oprea, A. Dziechciarz, and C. Martis, “Comparative analysis of different synchronous reluctance motor topologies,” in Proc. 2015 IEEE 15th Int. Conf. Environment and Electrical Engineering (EEEIC), Rome, Italy, 2015, pp. 1904–1909.
[23] J. Kolehainen, “Synchronous reluctance motor with form blocked rotor,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 450–456, Jun. 2010.
[24] S. Cai, J. Shen, H. Hao, and M. Jin, “Design methods of transversally laminated synchronous reluctance machines,” CES Trans. Electrical Machines and Systems, vol. 1, no. 2, pp. 164–173, Jul. 2017.
[25] “ABB SynRM motor & drive package – Super premium efficiency for HVAC application,” 8th edition of the European hpc infrastructure workshop, Mar. 2017
[26] S. Taghavi and P. Pillay, “A sizing methodology of the synchronous reluctance motor for traction applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 2, pp. 329–340, Jun. 2014.
[27] M. N. Ibrahim, H. Rezk, M. Al-Dhaifallah, and P. Sergeant, ‘‘Solar array fed synchronous reluctance motor driven water pump: An improved performance under partial shading conditions,’’ IEEE Access, vol. 7, pp. 77100–77115, 2019.
[28] A. Yousefi-Talouki, P. Pescetto, and G. Pellegrino, “Sensorless direct flux vector control of synchronous reluctance motors including standstill, MTPA, and flux weakening,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3598–3608, Jul./Aug. 2017.
[29] Y. Okamoto, R. Hoshino, S. Wakao, and T. Tsuburaya, “Improvement of torque characteristics for a synchronous reluctance motor using MMA-based topology optimization method,” IEEE Trans. Magn., vol. 54, no. 3, Mar. 2018.
[30] N. Bedetti, S. Calligaro, and R. Petrella, “Stand-still self-sdentification of flux characteristics for synchronous reluctance machines using novel saturation approximating function and multiple linear regression,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3083–3092, Jul./Aug. 2016.
[31] H. C. Liu and J. Lee, “Optimum design of an IE4 line-start synchronous reluctance motor considering manufacturing process loss effect,” IEEE Trans. Ind. Electron., vol. 65, no. 4, pp. 3104–3114, Apr. 2018.
[32] F. Oliveira and A. Ukil, “Comparative performance analysis of induction & synchronous reluctance motors in chiller systems for energy efficient buildings”, IEEE Trans. Ind. Informat., vol. 15, no. 8, pp. 4384–4393, Aug. 2019.
[33] M. N. Ibrahim, H. Rezk, M. Al-Dhaifallah, and P. Sergeant, ‘‘Hybrid photovoltaic-thermoelectric generator powered synchronous reluctance motor for pumping applications,’’ IEEE Access, vol. 7, pp. 146979–146988, 2019.
[34] F. J. Lin, M. S. Huang, S. G. Chen, and C. W. Hsu, “Intelligent maximum torque per ampere tracking control of synchronous reluctance motor using recurrent Legendre fuzzy neural network,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12080–12094, Dec. 2019.
[35] A. Vagati, M. Pastorelli, G. Franceschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758–765, Jul./Aug. 1998.
[36] S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, Jan. 2011.
[37] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157–2166, Apr. 2015.
[38] S. K. Tseng, T. H. Liu, J. W. Hsu, L. R. Ramelan, and E. Firmansyah, “Implementation of online maximum efficiency tracking control for a dualmotor drive system,” IET Elect. Power Appl., vol. 9, no. 7, pp. 449–458, 2015.
[39] T. H. Liu, Y. Chen, S. K. Tseng, and M. J. Wu, “Implementation of maximum efficiency control for matrix-converter-based interior permanent magnet synchronous motor drive systems,” IET J. Eng., vol. 2018, no. 5, pp. 296–303, 2018.
[40] H. Pairo and A. Shoulaie, “Operating region and maximum attainable speed of energy-efficient control methods of interior permanent-magnet synchronous motors,” IET Power Electron., vol. 10, no. 5, pp. 555–567, Apr. 2017.
[41] J. Hu and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” IEEE Trans. Power Eletron., vol. 13, no. 5, pp. 969-977, Sep. 1998
[42] R. R. Moghaddam, F. Magnussen, and C. Sadarangani, “Theoretical and experimental reevaluation of synchronous reluctance machine,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 6–13, Jan. 2010.
[43] F. Fernandez-Bernal, A. Garcia-Cerrada, and R. Faure, “Efficient control of reluctance synchronous machines,” in Proc. 24th Annu. Conf. IEEE IECON, vol. 2, pp. 923–928, Aug. 31–Sep. 4, 1998.
[44] S. Piriienko et al., “Influence of the control strategy on the efficiency of synrm based small-scale wind generators,” 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne, Australia, 2019, pp. 280-285.
[45] S. S. Maroufian and P. Pillay, “Design and analysis of a novel PM-assisted synchronous reluctance machine topology with AlNiCo magnets,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 4733-4742, Sep./Oct. 2019.
[46] S. Stipetic, D. Zarko, and N. Cavar, “Adjustment of rated current and power factor in a synchronous reluctance motor optimally designed for maximum saliency ratio,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2481-2490, May/Jun. 2020.
[47] M. N. F. Ibrahim, A. S. Abdel-Khalik, E. M. Rashad, and P. Sergeant, “An improved torque density synchronous reluctance machine with a combined star–delta winding layout,” IEEE Trans. Energy Convers., vol. 33, no. 3, pp. 1015-1024, Sep. 2018.
[48] D. M. Sahoo and S. Chakraverty, “Functional link neural network learning for response prediction of tall shear buildings with respect to earthquake data,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 1–10, Jan. 2018.
[49] B. Y. Vyas, B. Das, and R. P. Maheshwari, “Improved fault classification in series compensated transmission line: Comparative evaluation of chebyshev neural network training algorithms,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1631–1642, Aug. 2016.
[50] L. Jin, Z. Huang, Y. Li, Z. Sun, H. Li, and J. Zhang, ‘‘On modified multioutput Chebyshev-polynomial feed-forward neural network for pattern classification of wine regions,’’ IEEE Access, vol. 7, pp. 1973–1980, 2019.
[51] S. Hou, J. Fei, C. Chen, and Y. Chu, “Finite-time adaptive fuzzy-neural network control of active power filter,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 10298–10313, Oct. 2019.
[52] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[53] H. Zhao, S. Gao, Z. He, X. Zeng, W. Jin, and T. Li, “Identification of Nonlinear Dynamic System Using a Novel Recurrent Wavelet Neural Network Based on the Pipelined Architecture,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4171–4182, Aug. 2014.
[54] M. Pratama, J. Lu, E. Lughofer, G. Q. Zhang, and M. J. Er, “An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1175–1192, Oct. 2017.
[55] C. H. Chen, C. J. Lin, and C. T. Lin, “A functional-link-based neuro-fuzzy network for nonlinear system control,” IEEE Trans. Fuzzy Syst., vol. 16, no. 5, pp. 1362–1378, Oct. 2008.
[56] A. Rubio-Solis and G. Panoutsos, “Interval type-2 radial basis function neural network: A modeling framework,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 457–473, Apr. 2015.
[57] 吳長恩,“具寬速度控制範圍之同步磁阻馬達驅動器研製”,碩士論文,國立台北科技大學電機工程系,民國一百零五年。
[58] JFE, Electrical Steel Sheets, JFE Steel Corpotation.
[59] A. Kenny, A. Palazzolo, G. T. Montague, and A. F. Kascak, “Theory and Test Correlation for Laminate Stacking Factor Effect on Homopolar Bearing Stiffness.” ASME, Engineering for Gas Turbines and Power, vol. 126, no. 1, pp. 142-146, Jan. 2004.
[60] 鄒應嶼,“DSP數位控制簡介”,技術報告 TR–024,國立交通大學電機與控制工程系所,2000。
[61] 陳世剛,“利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統”,碩士論文,國立中央大學電機系,民國一百零五年。
[62] TMS320F2807x Piccolo Microcontrollers Datasheet, Texas Instruments.
[63] 黃泰寅,“新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發”,碩士論文,國立中央大學電機系,民國一百零六年。
[64] 許哲瑋,“同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制”,碩士論文,國立中央大學電機系,民國一百零八年。
[65] Bimal K. Bose,“Modern Power Electronics and AC Drives”Oct. 2001.
[66] P. Pillay, R. G. Haarley, and E. J. Odendal, “A comparison between star and delta connected induction motors when supplied by current source inverters,” Electric Power Systems Research., vol. 8, no. 1, pp. 41–51, Oct. 1984.
[67] Z. Haisen, L. Xiaofang, H. Jia, and L. Yingli, “The influence of wye and delta connection on induction motor losses taking slot opening and skew effect into account,” Proc. IEEE International Electric Machines and Drives Conference, May 2009.
[68] M. Y. Wei and T. H. Liu, “Design and implementation of an online tuning adaptive controller for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3644– 3657, Sep. 2013.
[69] E. Daryabeigi, A. Mirzaei, H. A. Zarchi, and S. Vaez-Zadeh, “Deviation model-based control of synchronous reluctance motor drives with reduced parameter dependency,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6697–6705, Jul. 2019.
[70] R. Thike and P. Pillay, “Automated current control method for flux-linkage measurement of synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp. 1464-1474, Mar./Apr. 2020.
[71] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara, and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl.,, vol. 49, no. 6, pp. 2543-2551, Nov./Dec. 2013.
[72] M. F. Rahman, M. E. Haque, L. Tang, and L. Zhong, “Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 799–809, Aug. 2004.
[73] M. . P. Kazmierkowski, R. Krishnan, and F. Blaabjerg, Control in Power Electronics-Selected Problems. New York: Academic, 2002.
[74] S. Y. Chen and M. H. Song, “Energy-saving dynamic bias current control of active magnetic bearing positioning system using adaptive differential evolution,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 5, pp. 942–953, May 2019.
[75] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782–3794, Aug. 2012.
[76] G. H. B. Foo and M. F. Rahman, “Direct torque control of an IPM-synchronous motor drive at very low speed using a sliding-mode stator flux observer,” IEEE Trans. Power Electron, vol. 25, no. 4, pp. 933-942, Apr. 2010.
[77] P. Zhang, P. A. Cassani and S. S. Williamson, “An accurate inductance profile measurement technique for switched reluctance machines,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2972-2979, Sep. 2010.
[78] M. N. Ibrahim, P. Sergeant, and E. M. Rashad, “Relevance of including saturation and position dependence in the inductances for accurate dynamic modeling and control of SynRMs,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 151–160, Jan./Feb. 2017.
[79] A. S. O. Ogunjuyigbe, A. A. Jimoh, D. V. Nicolae, and E. S. Obe, “Analysis of synchronous reluctance machine with magnetically coupled three-phase windings and reactive power compensation,” IET Electr. Power Appl., vol. 4, no. 4, pp. 291–303, Apr. 2009.
[80] M. Ferrari, N. Bianchi, and E. Fornasiero, “Analysis of rotor saturation in synchronous reluctance and PM-assisted reluctance motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 169–177, Jan. 2015.
[81] A. Balamurali, G. Feng, C. Lai, J. Tjong, and N. C. Kar, “Maximum efficiency control of PMSM drives considering system losses using gradient descent algorithm based on DC power measurement,” IEEE Trans. on Energy Conver., vol. 33, no. 4, pp. 2240–2249, Dec. 2018.
[82] Z. Yu, W. Kong, D. Li, R. Qu, and C. Gan, “Power factor analysis and maximum power factor control strategy for six-phase dc-biased vernier reluctance machines,” IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 4643-4652, Sep./Oct. 2019.
[83] “IEEE recommended practice for electric power distribution for industrial plants,” IEEE Std 141-1993, pp.1-768, 29 Apr. 1994.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2021-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明