參考文獻 |
[1] 衛生福利部統計處. (Jan. 24, 2017). “死因統計,” 衛生福利部統計處, [Online]. Available: https://dep.mohw.gov.tw/DOS/np1776113. html (visited on 06/02/2021).
[2] 衛生福利部國民健康署. (Dec. 31, 2016). “認識冠心病,” 衛生福利部國民健康署, [Online]. Available: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=632&pid=1188 (visited on 06/02/2021).
[3] M. M. Nadrljanski. “Computed tomography | radiology reference article | radiopaedia.org,” Radiopaedia, [Online]. Available: https://radiopaedia.org/articles/computedtomography (visited on 07/05/2021).
[4] P. McKavanagh, G. Walls, C. McCune, J. Malloy, M. T. Harbinson, P. A. Ball, and P. M. Donnelly, “The essentials of cardiac computerized tomography,” Cardiology and Therapy, vol. 4, no. 2, pp. 117–129, Dec. 2015.
[5] P. Moeskops, J. M. Wolterink, B. H. M. van der Velden, K. G. A. Gilhuijs, T. Leiner, M. A. Viergever, and I. Išgum, “Deep learning for multitask medical image segmentation in multiple modalities,” in Medical Image Computing and ComputerAssisted Intervention –MICCAI 2016, S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, Eds., ser. Lecture Notes in Computer Science, Cham: Springer International Publishing, 2016, pp. 478–486.
[6] W. Huang, L. Huang, Z. Lin, S. Huang, Y. Chi, J. Zhou, J. Zhang, R.S. Tan, and L. Zhong, “Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic images,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jul. 2018, pp. 608–611.
[7] Y.C. Chen, Y.C. Lin, C.P. Wang, C.Y. Lee, T.D. Wang, W.J. Lee, and C.M. Chen, “Coronary artery segmentation in cardiac CT angiography using 3d multichannel unet,” presented at the International Conference on Medical Imaging with Deep Learning – Extended Abstract Track, Apr. 17, 2019.
[8] T. Lei, R. Wang, Y. Wan, B. Zhang, H. Meng, and A. K. Nandi, “Medical image segmentation using deep learning: A survey,” arXiv:2009.13120 [cs, eess], Dec. 16, 2020. 38
[9] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on deep learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, Dec. 1, 2017.
[10] S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1, 2021.
[11] M. Andreucci, T. Faga, R. Serra, G. De Sarro, and A. Michael, “Update on the renal toxicity of iodinated contrast drugs used in clinical medicine,” Drug, Healthcare and Patient Safety, vol. 9, pp. 25–37, 2017.
[12] P. Rasuli and D. I. Hammond, “Metformin and contrast media: Where is the conflict?” Canadian Association of Radiologists Journal = Journal l’Association Canadienne Des Radiologistes, vol. 49, no. 3, pp. 161–166, Jun. 1998.
[13] M. Saljoughian. (May 22, 2012). “Intravenous radiocontrast media: A review of allergic reactions,” [Online]. Available: https : / / www . uspharmacist . com / article / intravenous radiocontrastmediaareviewofallergicreactions (visited on 07/06/2021).
[14] K. Greenway. “Hounsfield unit | radiology reference article | radiopaedia.org,” Radiopaedia, [Online]. Available: https : / / radiopaedia . org / articles / hounsfield unit (visited on 07/04/2021).
[15] M. H. Lev and R. G. Gonzalez, “CT angiography and CT perfusion imaging,” in Brain Mapping: The Methods (Second Edition), A. W. Toga and J. C. Mazziotta, Eds., San Diego: Academic Press, Jan. 1, 2002, pp. 427–484.
[16] A. Murphy. “Windowing (CT) | radiology reference article | radiopaedia.org,” Radiopaedia, [Online]. Available: https://radiopaedia.org/articles/windowingct? lang=us (visited on 07/04/2021).
[17] I. Ogobuiro, C. J. Wehrle, and F. Tuma, “Anatomy, thorax, heart coronary arteries,” in StatPearls, Treasure Island (FL): StatPearls Publishing, 2021.
[18] S. Rehman, A. Khan, and A. Rehman, Physiology, Coronary Circulation. StatPearls Publishing, May 9, 2021.
[19] “Atherosclerosis | american heart association,” [Online]. Available: https://www.heart. org/en/healthtopics/ cholesterol/aboutcholesterol/ atherosclerosis (visited on 08/22/2021).
[20] “Atherosclerosis | NHLBI, NIH,” [Online]. Available: https://www.nhlbi.nih.gov/healthtopics/ atherosclerosis (visited on 08/22/2021).
[21] N. Ojha and A. S. Dhamoon, Myocardial Infarction. StatPearls Publishing, Aug. 11, 2021. 39
[22] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d unet: Learning dense volumetric segmentation from sparse annotation,” in Medical Image Computing and ComputerAssisted Intervention–MICCAI 2016, S. Ourselin, L. Joskowicz, M. R. Sabuncu, G. Unal, and W. Wells, Eds., ser. Lecture Notes in Computer Science, Cham: Springer International Publishing, 2016, pp. 424–432.
[23] J.Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired imagetoimage translation using cycleconsistent adversarial networks,” in 2017 IEEE International Conference on Computer Vision (ICCV), Oct. 2017, pp. 2242–2251.
[24] R. Shahzad, D. Bos, R. P. J. Budde, K. Pellikaan, W. J. Niessen, A. van der Lugt, and T. van Walsum, “Automatic segmentation and quantification of the cardiac structures from noncontrastenhanced cardiac CT scans,” Physics in Medicine and Biology, vol. 62, no. 9, pp. 3798–3813, May 7, 2017.
[25] A. Patel, F. H. B. M. Schreuder, C. J. M. Klijn, M. Prokop, B. v. Ginneken, H. A. Marquering, Y. B. W. E. M. Roos, M. I. Baharoglu, F. J. A. Meijer, and R. Manniesing, “Intracerebral haemorrhage segmentation in noncontrast CT,” Scientific Reports, vol. 9, no. 1, p. 17 858, Nov. 28, 2019.
[26] A. Tuladhar, S. Schimert, D. Rajashekar, H. C. Kniep, J. Fiehler, and N. D. Forkert, “Automatic segmentation of stroke lesions in noncontrast computed tomography datasets with convolutional neural networks,” IEEE Access, vol. 8, pp. 94 871–94 879, 2020.
[27] J. Jiang, Y.C. Hu, N. Tyagi, P. Zhang, A. Rimner, G. S. Mageras, J. O. Deasy, and H. Veeraraghavan, “Tumoraware, adversarial domain adaptation from CT to MRI for lung cancer segmentation,” in Medical Image Computing and Computer Assisted Intervention –MICCAI 2018, A. F. Frangi, J. A. Schnabel, C. Davatzikos, C. AlberolaLópez, and G. Fichtinger, Eds., ser. Lecture Notes in Computer Science, Cham: Springer International Publishing, 2018, pp. 777–785.
[28] P. Welander, S. Karlsson, and A. Eklund, “Generative adversarial networks for imagetoimage translation on multicontrast MR images a comparison of CycleGAN and UNIT,” arXiv:1806.07777 [cs], Jun. 20, 2018.
[29] C. Song, B. He, H. Chen, S. Jia, X. Chen, and F. Jia, “Noncontrast CT liver segmentation using CycleGAN data augmentation from contrast enhanced CT,” in Interpretable and AnnotationEfficient Learning for Medical Image Computing, J. Cardoso, H. Van Nguyen, N. Heller, P. Henriques Abreu, I. Isgum, W. Silva, R. Cruz, J. Pereira Amorim, V. Patel, B. Roysam, K. Zhou, S. Jiang, N. Le, K. Luu, R. Sznitman, V. Cheplygina, D. Mateus, E. Trucco, and S. Abbasi, Eds., ser. Lecture Notes in Computer Science, Cham: Springer International Publishing, 2020, pp. 122–129.
[30] A. Kanitsar, D. Fleischmann, R. Wegenkittl, P. Felkel, and E. Groller, “CPR curved planar reformation,” in IEEE Visualization, 2002. VIS 2002., Oct. 2002, pp. 37–44.
[31] The Slicer Community. “3d slicer image computing platform,” 3D Slicer, [Online]. Available: https://slicer.org/ (visited on 07/02/2021). 40
[32] A. Fedorov, R. Beichel, J. KalpathyCramer, J. Finet, J.C. FillionRobin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis, “3d slicer as an image computing platform for the quantitative imaging network,” Magnetic resonance imaging, vol. 30, no. 9, pp. 1323–1341, Nov. 2012.
[33] D. T. Gering, A. Nabavi, R. Kikinis, W. E. L. Grimson, N. Hata, P. Everett, F. Jolesz, and W. M. Wells, “An integrated visualization system for surgical planning and guidance using image fusion and interventional imaging,” in Medical Image Computing and ComputerAssisted Intervention–MICCAI'99, C. Taylor and A. Colchester, Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 1999, pp. 809–819.
[34] D. T. Gering, A. Nabavi, R. Kikinis, N. Hata, L. J. O’Donnell, W. E. Grimson, F. A. Jolesz, P. M. Black, and W. M. Wells, “An integrated visualization system for surgical planning and guidance using image fusion and an open MR,” Journal of magnetic resonance imaging: JMRI, vol. 13, no. 6, pp. 967–975, Jun. 2001.
[35] T. Kapur, S. Pieper, A. Fedorov, J.C. FillionRobin, M. Halle, L. O’Donnell, A. Lasso, T. Ungi, C. Pinter, J. Finet, S. Pujol, J. Jagadeesan, J. Tokuda, I. Norton, R. S. J. Estepar, D. Gering, H. J. W. L. Aerts, M. Jakab, N. Hata, L. Ibanez, D. Blezek, J. Miller, S. Aylward, W. E. L. Grimson, G. Fichtinger, W. M. Wells, W. E. Lorensen, W. Schroeder, and R. Kikinis, “Increasing the impact of medical image computing using communitybased openaccess hackathons: The NAMIC and 3d slicer experience,” Medical Image Analysis, 20th anniversary of the Medical Image Analysis journal (MedIA), vol. 33, pp. 176– 180, Oct. 1, 2016.
[36] R. Kikinis, S. D. Pieper, and K. G. Vosburgh, “3d slicer: A platform for subjectspecific image analysis, visualization, and clinical support,” in Intraoperative Imaging and ImageGuided Therapy, F. A. Jolesz, Ed., New York, NY: Springer, 2014, pp. 277–289.
[37] S. Pieper, B. Lorensen, W. Schroeder, and R. Kikinis, “The NAMIC kit: ITK, VTK, pipelines, grids and 3d slicer as an open platform for the medical image computing community,” in 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006., Apr. 2006, pp. 698–701. |