參考文獻 |
Arifianto, D., & Pratiwi, E. W. (2017). Enhanced harmonics for music appreciation on cochlear implant. IEEE Region 10 Annual International Conference, Proceedings/TENCON. https://doi.org/10.1109/TENCON.2016.7848410
Arifianto, D., & Pratiwi, E. W. (2016). Enhanced harmonics for music appreciation on cochlear implant. 2016 IEEE Region 10 Conference (TENCON), 2167–2171. https://doi.org/10.1109/TENCON.2016.7848410
Brant, J. A., Eliades, S. J., Kaufman, H., Chen, J., & Ruckenstein, M. J. (2018). AzBio Speech Understanding Performance in Quiet and Noise in High Performing Cochlear Implant Users. Otology & Neurotology, 39(5). https://journals.lww.com/otology-neurotology/Fulltext/2018/06000/AzBio_Speech_Understanding_Performance_in_Quiet.9.aspx
Dassa, A. (2018). Musical Auto-Biography Interview (MABI) as promoting self-identity and well-being in the elderly through music and reminiscence. Nordic Journal of Music Therapy, 27(5), 419–430. https://doi.org/10.1080/08098131.2018.1490921
Donnelly, P. J., & Limb, C. J. (2012). Music perception in cochlear implant users. In Cochlear Implants: Principles and Practices. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84970996528&partnerID=40&md5=ce42707cc036cc05583a602f2b576183
Dorman, M. F., Loizou, P. C., & Rainey, D. (1997). Simulating the effect of cochlear-implant electrode insertion depth on speech understanding. The Journal of the Acoustical Society of America, 102(5), 2993–2996. https://doi.org/10.1121/1.420354
Drennan, W. R., & Rubinstein, J. T. (2008). Music perception in cochlear implant users and its relationship with psychophysical capabilities. Journal of Rehabilitation Research and Development, 45(5), 779–789. https://doi.org/10.1682/jrrd.2007.08.0118
Dritsakis, G., van Besouw, R. M., & O′ Meara, A. (2017). Impact of music on the quality of life of cochlear implant users: a focus group study. Cochlear Implants International, 18(4), 207–215. https://doi.org/10.1080/14670100.2017.1303892
Fishman, K. E., Shannon, R. V, & Slattery, W. H. (1997). Speech recognition as a function of the number of electrodes used in the SPEAK cochlear implant speech processor. Journal of Speech, Language, and Hearing Research : JSLHR, 40(5), 1201–1215. https://doi.org/10.1044/jslhr.4005.1201
Fortune, T. W., Woodruff, B. D., & Preves, D. A. (1994). A New Technique for Quantifying Temporal Envelope Contrasts. Ear and Hearing, 15(1). https://journals.lww.com/ear-hearing/Fulltext/1994/02000/A_New_Technique_for_Quantifying_Temporal_Envelope.11.aspx
Friesen, L. M., Shannon, R. V, Baskent, D., & Wang, X. (2001). Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. The Journal of the Acoustical Society of America, 110(2), 1150–1163. https://doi.org/10.1121/1.1381538
Fujita, S., & Ito, J. (1999). Ability of Nucleus Cochlear Implantees to Recognize Music. Annals of Otology, Rhinology & Laryngology, 108(7), 634–640. https://doi.org/10.1177/000348949910800702
Galvin, J., Fu, Q.-J., & Nogaki, G. (2007). Melodic Contour Identification by Cochlear Implant Listeners. Ear and Hearing, 28, 302–319. https://doi.org/10.1097/01.aud.0000261689.35445.20
Garnham, C., O’Driscoll, M., Ramsden And, R., & Saeed, S. (2002). Speech understanding in noise with a Med-El COMBI 40+ cochlear implant using reduced channel sets. Ear and Hearing, 23(6), 540–552. https://doi.org/10.1097/00003446-200212000-00005
Geurts, L., & Wouters, J. (1999). Enhancing the speech envelope of continuous interleaved sampling processors for cochlear implants. The Journal of the Acoustical Society of America, 105(4), 2476–2484. https://doi.org/10.1121/1.426851
Gfeller, K, Christ, A., Knutson, J., Witt, S., Murray, K., & Tyler, R. (2000). Musical backgrounds, listening habits, and aesthetic enjoyment of adult cochlear implant recipients. Journal of the American Academy of Audiology, 11 7, 390–406.
Gfeller, Kate, & Lansing, C. (1992). Musical Perception of Cochlear Implant Users as Measured by the Primary Measures of Music Audiation: An Item Analysis 1. Journal of Music Therapy, 29(1), 18–39. https://doi.org/10.1093/jmt/29.1.18
Gfeller, Kate, Turner, C., Mehr, M., Woodworth, G., Fearn, R., Knutson, J. F., Witt, S., & Stordahl, J. (2002). Recognition of familiar melodies by adult cochlear implant recipients and normal-hearing adults. Cochlear Implants International, 3(1), 29–53. https://doi.org/10.1179/cim.2002.3.1.29
Gfeller, Kate, Woodworth, G., Robin, D. A., Witt, S., & Knutson, J. F. (1997). Perception of Rhythmic and Sequential Pitch Patterns by Normally Hearing Adults and Adult Cochlear Implant Users. Ear and Hearing, 18(3). https://journals.lww.com/ear-hearing/Fulltext/1997/06000/Perception_of_Rhythmic_and_Sequential_Pitch.8.aspx
Gifford, R. H., Shallop, J. K., & Peterson, A. M. (2008). Speech recognition materials and ceiling effects: considerations for cochlear implant programs. Audiology & Neuro-Otology, 13(3), 193–205. https://doi.org/10.1159/000113510
Ho, L. L., Wu, C. M., & Lin, H. C. (2009). Effect of channel number, stimulation rate, and electroacoustic stimulation. Poster Presentation of 7th Asia Pacific Symposium on Cochlear Implants and Related Sciences.
Hsiao, F. (2008). Mandarin melody recognition by pediatric cochlear implant recipients. Journal of Music Therapy, 45(4), 390–404. https://doi.org/10.1093/jmt/45.4.390
Huang, E. H., Wu, C. M., & Lin, H. C. (2019). Simulation of three auditory physiology based CI sound coding strategies with Mandarin speech. Proc. of the 12th Asia Pacific Symposium on Cochlear Implants and Related Sciences.
Jiam, N. T., & Limb, C. J. (2019). Rhythm processing in cochlear implant−mediated music perception. Annals of the New York Academy of Sciences, 1453(1), 22–28. https://doi.org/https://doi.org/10.1111/nyas.14130
Karoui, C., James, C., Barone, P., Bakhos, D., Marx, M., & Macherey, O. (2019). Searching for the Sound of a Cochlear Implant: Evaluation of Different Vocoder Parameters by Cochlear Implant Users With Single-Sided Deafness. Trends in Hearing, 23, 2331216519866029. https://doi.org/10.1177/2331216519866029
Kate, G., & R., L. C. (1991). Melodic, Rhythmic, and Timbral Perception of Adult Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 34(4), 916–920. https://doi.org/10.1044/jshr.3404.916
Kong, Y.-Y., Cruz, R., Jones, J. A., & Zeng, F.-G. (2004). Music perception with temporal cues in acoustic and electric hearing. Ear and Hearing, 25(2), 173–185. https://doi.org/10.1097/01.aud.0000120365.97792.2f
Kong, Y.-Y., Mullangi, A., Marozeau, J., & Epstein, M. (2011). Temporal and spectral cues for musical timbre perception in electric hearing. Journal of Speech, Language, and Hearing Research : JSLHR, 54(3), 981–994. https://doi.org/10.1044/1092-4388(2010/10-0196)
Loizou, P. C. (1999). Signal-processing techniques for cochlear implants. IEEE Engineering in Medicine and Biology Magazine : The Quarterly Magazine of the Engineering in Medicine & Biology Society, 18(3), 34–46. https://doi.org/10.1109/51.765187
Lorenzi, C., Gilbert, G., Carn, H., Garnier, S., & Moore, B. C. J. (2006). Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proceedings of the National Academy of Sciences, 103(49), 18866–18869. https://doi.org/10.1073/pnas.0607364103
McDermott, H. J. (2004). Music Perception with Cochlear Implants: A Review. Trends in Amplification, 8(2), 49–82. https://doi.org/10.1177/108471380400800203
McDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch? Psychological Science, 19(12), 1263–1271. https://doi.org/10.1111/j.1467-9280.2008.02235.x
Mcnichols, E. (2018). Music Perception In Simulations of Cochlear Implant Listening. University of Colorado Boulder.
Milczynski, M., Wouters, J., & van Wieringen, A. (2009). Improved fundamental frequency coding in cochlear implant signal processing. The Journal of the Acoustical Society of America, 125, 2260–2271. https://doi.org/10.1121/1.3085642
Olszewski, C., Gfeller, K., Froman, R., Stordahl, J., & Tomblin, J. (2005). Familiar melody recognition by children and adults using cochlear implants and normal hearing children. Cochlear Implants International, 6, 123–140. https://doi.org/10.1002/cii.5
Oxenham, A. J. (2008). Pitch Perception and Auditory Stream Segregation: Implications for Hearing Loss and Cochlear Implants. Trends in Amplification, 12(4), 316–331. https://doi.org/10.1177/1084713808325881
Papinczak, Z. E., Dingle, G. A., Stoyanov, S. R., Hides, L., & Zelenko, O. (2015). Young people′s uses of music for well-being. Journal of Youth Studies, 18(9), 1119–1134. https://doi.org/10.1080/13676261.2015.1020935
Rabiner, L., & Juang, B.-H. (1993). Fundamentals of Speech Recognition. Prentice-Hall, Inc.
Reich, R. D. (2002). Instrument identification through a simulated cochlear implant processing system. Massachusetts Institute of Technology.
Schulz E, K. M. (1994). Music perception with the MED-EL implants. In in Hochmair-Desoyer IJ, Hochmaier ES (eds): Advances in Cochlear Implants.
Shannon, R. V, Zeng, F.-G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech Recognition with Primarily Temporal Cues. Science, 270(5234), 303 LP – 304. https://doi.org/10.1126/science.270.5234.303
Souza, P., & Rosen, S. (2009). Effects of envelope bandwidth on the intelligibility of sine- and noise-vocoded speech. The Journal of the Acoustical Society of America, 126(2), 792–805. https://doi.org/10.1121/1.3158835
Sucher, C. M., & McDermott, H. J. (2007). Pitch ranking of complex tones by normally hearing subjects and cochlear implant users. Hearing Research, 230(1–2), 80–87. https://doi.org/10.1016/j.heares.2007.05.002
Vandali, A. E., Whitford, L. A., Plant, K. L., & Clark, and G. M. (2000). Speech Perception as a Function of Electrical Stimulation Rate: Using the Nucleus 24 Cochlear Implant System. Ear and Hearing, 21(6). https://journals.lww.com/ear-hearing/Fulltext/2000/12000/Speech_Perception_as_a_Function_of_Electrical.8.aspx
World Health Organisation. (2021, April 1). Deafness and hearing loss. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
Wu, C. M., Huang, K. Y., & Lin, H. C. (2009). Effects of channel number, stimulation rate, and electroacoustic stimulation of cochlear implant simulation on Chinese speech recognition in noise. Proc. of the 7- Th Asia Pacific Symposium on Cochlear Implants and Related Sciences.
Zhao, K., Bai, Z. G., Bo, A., & Chi, I. (2016). A systematic review and meta-analysis of music therapy for the older adults with depression. International Journal of Geriatric Psychiatry, 31(11), 1188–1198. https://doi.org/10.1002/gps.4494 |