博碩士論文 107521136 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:3.145.41.253
姓名 蔡瑋庭(Wei-Ting Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於力量感測之針灸輔具研製
(The Design and Implementation of an Auto-needle-insertion Acupuncture Assistive Device Using Force Sensor)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 口腔核磁共振影像的分割與三維灰階值內插
★ 數位式氣喘尖峰氣流量監測系統設計★ 結合人工電子耳與助聽器對中文語音辨識率的影響
★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析★ 中文發聲之神經關聯性的腦功能磁振造影研究
★ 利用有限元素法建構3維的舌頭力學模型★ 以磁振造影為基礎的立體舌頭圖譜之建構
★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究★ 口腔磁振影像舌頭構造之自動分割
★ 微波輸出窗電性匹配之研究★ 以軟體為基準的助聽器模擬平台之發展-噪音消除
★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除★ 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響
★ 用類神經網路研究中文語音聲調產生之神經關聯性★ 教學用電腦模擬生理系統之建構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-1以後開放)
摘要(中) 隨著養生觀念的盛行,民眾對於中醫的接受度上升,針灸療法的臨床應用日益增加。為了減少人為疏失,因應遠距醫療的趨勢,現行針灸裝置因固定深度而難以達到醫療效果的情形,本研究嘗試設計出一台自動針灸輔具以解決這些現況。本裝置非常輕巧,結合3D列印技術總重不到500gw,亦可達遠距醫療便攜之訴求。將力量感測器FSR402 (Interlink Electronics, Camarillo, America)與5.1kΩ電阻串聯形成分壓電路,並使用開發板Linklt (聯發科技,MediaTek,新竹,台灣)量測電壓推導出受力變化。其在自動下針時,設定當力量變化超過15gw時,停止下針,同時設計計數器作為深度計算,當深度超過20mm仍未偵測到超過15gw的力量變化時,會進入安全模式將針具支架上升。為了測試輔具之性能,以洋菜4.8%w/v-吉利丁2%w/v-洋菜5.2%w/v配製三層真皮-皮下組織-肌肉模擬組織進行20次下刺實驗,實驗中有18次針尖都成功停在皮下組織與肌肉分層處,此自動針灸輔具確實有正確的偵測力量變化並進行相應操作,達到預期之成果。未來可以調整硬體機構設計讓其操作更加精準便利。
摘要(英) With the prevalence of the concept of health preservation, the public’s acceptance of traditional Chinese medicine has increased, and the clinical therapy using acupuncture is increasing. To prevent human error, respond to the trend of telemedicine, and overcome the limited medical efficacy of the current acupuncture device with fixed needle insertion depth, an automatic acupuncture assistive device was designed. With the appliance of 3D printing, the design only weighed less than 500gw which was compliant with the requirements of remote medical portability. Connecting the force sensor FSR402 (Interlink Electronics, Camarillo, America) and a 5.1kΩ resistor in series to form a voltage divider circuit, and using the development board Linklt (MediaTek, Hsinchu, Taiwan) to measure the voltage would derive the rate of force change. While inserting the needle, the device was automatically stopped for a rate of force change greater than 15gw. At the same time, a counter was designed to estimate the depth. When the depth exceeded 20mm without detecting a rate of force change greater than 15gw, the automatic acupuncture assistive device entered the safe mode and rose the needle holder. To test the performance of the assistive device, acupuncture experiments were carried out 20 times with a three-layer Dermis-Subcutaneous Tissue-Muscle simulated tissue prepared with agar 4.8%w/v-gelatin 2%w/v-agar 5.2%w/v. In the experiments, the needle tip was successfully stopped at the subcutaneous tissue and muscle layer 18 times. This automatic acupuncture assistive device could correctly detect the rate of force change to perform corresponding operations for achieving the expected results. In the future, the automatic acupuncture assistive device can be innovated using improved mechanical design of hardware to make its operation more precise and more user-friendly.
關鍵字(中) ★ 針灸輔具
★ 力量感測
★ 深度定位
★ 3D列印
關鍵字(英) ★ Acupuncture Assistive Device
★ Force Sensing
★ Depth Positioning
★ 3D Printing
論文目次 目錄
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 2
1.2.1 針灸基本原理 2
1.2.2 針灸輔具和針灸裝置之相關發展 3
1.3 研究目的 5
1.4 論文架構 6
第二章 針灸原理與特徵 7
2.1 經絡 7
2.2 傳統得氣針法 8
2.3 針刺角度與額外手法 10
2.3.1 針刺角度 10
2.3.2 基本手法 10
2.3.3 輔助手法 11
2.4 意在針尖,針至界面 11
2.5 皮膚生理結構 12
2.6 針穿刺生物組織數學模型 13
2.7 結論 15
第三章 自動針灸輔具設計 16
3.1 力量感測器原理 16
3.2 力量感測系統與深度定位原理 20
3.3 自動針灸輔具硬體機構設計 23
3.4 自動針灸輔具電路設計 25
3.4.1 Linklt開發板 25
3.4.2 線路設計 26
3.5 結論 28
第四章 實驗方法與結果 30
4.1 模擬組織配製 30
4.2 自動針灸輔具LCD功能測試 33
4.3 自動針灸輔具實驗結果 35
4.4 結論 45
第五章 結論與未來展望 46
5.1 結論 46
5.2 未來展望 47
參考文獻 49
參考文獻 參考文獻
Chen, A., Balter, M., Chen, M., Gross, D., Alam, S., Maguire, T., & Yarmush, M. (2016). Multilayered tissue mimicking skin and vessel phantoms with tunable mechanical, optical, and acoustic properties. Medical Physics, Volume 43,Issue 6, pp. 3117-3131.
Davis, R., Churchill, D., Badger, G., Dunn, J., & Langevin, H. (2012). A new method for quantifying the needling component of acupuncture treatments. Acupuncture in Medicine, Volume 30, pp. 113-119.
De Wit, C., Olsson, H., Astrom, K., & Lischinsky, P. (1995). A new model for control of systems with friction. IEEE Transactions on Automatic Control, Volume 40, Issue 3, pp. 419 - 425.
Huang, Z., Li, D., & Li, C. (2007). Implementation of Reinforcement and Reduction of Traditional Acupuncture in Design of a Portable Laser Acupuncture Instrument. 2007 1st International Conference on Bioinformatics and Biomedical Engineering. Wuhan, China: IEEE.
Khadem, M., Rossa, C., Sloboda, R., Usmani, N., & Tavakoli, M. (2016). Mechanics of Tissue Cutting During Needle Insertion in Biological Tissue. IEEE Robotics and Automation Letters, Volume 1, Issue 2, pp. 800 - 807.
Langevin, H., Churchill, D., & Cipolla, M. (2001). Mechanical signaling through connective tissue: a mechanism for the therapeutic effect of acupuncture. Federation of American Societies for Experimental Biology, Volume15, Issue12, pp. 2275-2282.
Langevin, H., Churchill, D., Fox, J., Badger, G., Garra, B., & Krag, M. (2001). Biomechanical response to acupuncture needling in humans. Journal of Applied Physiology, Volume 91, Issue 6, pp. 2471-2478.
Langevin, H., Konofagou, E., Badger, G., Churchill, D., Fox, J., Ophir, J., & Garra, B. (2004). Tissue displacements during acupuncture using ultrasound elastography techniques. Ultrasound in Medicine & Biology, Volume 30, Issue 9, pp. 1173-1183.
Leow, M., Cao, T., Cui, S., & Tay, S. (2016). Quantifying needle motion during acupuncture: implications for education and future research. Acupuncture in Medicine, Volume 34, pp. 482-484.
Li, C., Lin, Y., & Huang, Z. (2007). Design of the Laser Acupuncture Therapeutic Apparatus Based on Fuzzy-PID Control. 2007 1st International Conference on Bioinformatics and Biomedical Engineering. Wuhan, China: IEEE.
Liu, G., Tsai, M., Chang, G., Wu, C., Lin, S., Chen, Y., & Lee, T. (2018). Safety Assessment of the Auto Manipulation Device for Acupuncture in Sprague-Dawley Rats: Preclinical Evaluation of the Prototype. Evidence-Based Complementary and Alternative Medicine, Volume 2018.
Liu, W., Yang, Z., Li, P., Zhang, J., & Jiang, S. (2019). Mechanics of tissue rupture during needle insertion in transverse isotropic soft tissue. Medical & Biological Engineering & Computing, Volume 57, pp. 1353–1366.
Shi, P., Du, J., Fang, F., Yu, H., & Liu, J. (2020). Design and Implementation of an Intelligent Analgesic Bracelet Based on Wrist-ankle Acupuncture. IEEE Transactions on Biomedical Circuits and Systems, Volume 14, pp. 1431 - 1440.
Song, K., Yan, L., Lee, S., Yoo, J., & Yoo, H.-J. (2011). A Wirelessly Powered Electro-Acupuncture Based on Adaptive Pulsewidth Monophase Stimulation. IEEE Transactions on Biomedical Circuits and Systems, Volume 5, Issue 2, pp. 138 - 146.
Su, J., Zhu, Y., & Zhu, M. (2019). Hand-Eye-Force Coordination of Acupuncture Robot. IEEE Access, Volume 7, pp. 82154 - 82161.
Virdyawan, V., Dessi, O., & Baena, F. (2020). A Novel Sensing Method to Detect Tissue Boundaries During Robotic Needle Insertion Based on Laser Doppler Flowmetry. IEEE Robotics and Automation Letters, Volume 5, Issue 2, pp. 1524 - 1531.
Wu, C., Lin, S., Chen, Y., & Liu, G. (2014). Development of Automatic Manipulation Device for Acupuncture. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago, IL, USA: IEEE.
Yeh, B., Chao, Y., Chen, Y., & Yu, H. (2021). Effect of acupuncture on capillary refill time in healthy adults: A clinical study. Microvascular Research, Volume 135.
Yeh, B., Chen, Y., Chang, S., Lee, C., & Chen, Y. (2021). Acupuncture helps to regain the consciousness of a COVID-19 patient complicated with hypoxic-ischemic encephalopathy: a case report. Neurological Sciences, Volume 42, pp. 475–478.
王正坤. (2015). 微整形醫學美容與保養品. 台南: 藝群. 擷取自 藝群醫學美容集團.
王滄松. (2005). 「針灸針深度計之研製」. 國立成功大學電機工程研究所. 碩士論文.
王澤瑋. (2009). 「可攜式肌肉注射裝置之可行性分析與設計」. 國立交通大學機械工程研究所. 畢業論文.
吳志賢. (2013年12月3日). 【醫師專欄-皮膚】 認識皮膚的生理結構 Structures of the Skin. 擷取自 https://drtonywu.pixnet.net/blog/post/26010100
林昭庚, 劉育祺, 李德茂, 陳曉能, & 余佳穎. (2011). 針刺穴位深度研究. 台北市: 國立中國醫藥研究所.
林貞岑. (2013年10月1日). 雷射針灸:無痛針灸新科技,減輕慢性疼痛. (陳玉昇, 編者) 擷取自 康健- 華人世界最值得信賴的健康生活平台: https://www.commonhealth.com.tw/article/67809
法務部. (2020年1月15日). 醫療法64-全國法規資料庫. 擷取自 全國法規資料庫: https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=L0020021&flno=64
夏一生. (2010). 家庭必備中醫實用百科基礎篇. 新北市: 大拓文化事業有限公司.
徐麥琪. (2004). 國際針灸學. 新北市: 正中書局.
楊筱雯. (2006). 「針灸針機械與電氣性能之研究」. 國立交通大學機械工程研究所. 畢業論文.
衛生福利部. (2018年5月11日). 衛福部公告通訊診療辦法 運用科技提升醫療照護效能與可近性- 衛生福利部. 擷取自 衛生福利部: https://www.mohw.gov.tw/cp-16-41136-1.html
衛生福利部. (2019年12月20日). 政策、醫療、產業攜手合作 開創智慧遠距醫療新紀元- 衛生福利部. 擷取自 衛生福利部: https://www.mohw.gov.tw/cp-4250-50603-1.html
衛生福利部統計處. (2019年4月10日). 2017年統計動向- 統計處. 擷取自 衛生福利部統計處: https://dep.mohw.gov.tw/DOS/lp-4434-113.html
指導教授 吳炤民(Chao-Ming Wu) 審核日期 2021-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明