博碩士論文 107323077 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.137.198.239
姓名 魏子鈞(Zih-Jyun Wei)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 液態金屬線圈應用於發電機之研究
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用液態金屬直寫製程,製作雙層PDMS薄膜包覆之液態金屬線圈,應用於旋轉發電機。線圈在設計階段時,依發電機磁鐵磁場分布規劃線圈直寫路徑,並根據線圈繞組感應電動勢數學模型分析不同匝數的性能差異,以選擇實際使用之匝數。 接著使用有限元素模擬軟體驗證模型,最後透過實際製作線圈之量測結果,確認前面設計流程是否有效。實驗結果顯示當線圈與磁鐵間距為0.494 mm、轉速為3900 rpm時,線圈開路電壓振幅為187 mV,最大輸出功率為75.68 μW,加上倍壓電路後,輸出端開路電壓為1300 mVdc,最大輸出功率為13.31 μW。
摘要(英) In this work, the liquid metal direct writing process is used to construct a dual-layer liquid metal coil which is embedded in the PDMS membrane. This dual-layer coil is used in a rotational energy harvester. During the design phase, the coil writing path was devised based on the magnetic field distribution of the ring magnet of the energy harvester. To choose a proper number of turns, an analysis was carried out and a comparison was made for the performance of the coil winding with different numbers of turns. The analysis was first done by following the mathematic model of the coil’s EMF and output power, then verified by using the finite element simulation software. Eventually, after the actual liquid metal coil was made, the experimental data of the coil was measured and served as proof of whether this coil design method is valid. With the coil at a distance of 0.494 mm with the magnet and a rotational speed of 3900 rpm, the experiment shows that the open-circuit voltage amplitude and maximum output power of the coil are 187 mV and 75.68 μW, respectively. Then the coil is connected with a voltage multiplier with the same operating conditions, the open-circuit voltage amplitude and maximum output power of the voltage multiplier are 1300 mVdc and 13.31 μW, respectively.
關鍵字(中) ★ 液態金屬
★ 軟性電路板
★ 旋轉發電機
關鍵字(英) ★ Liquid metal
★ Soft circuit board
★ Rotational generator
論文目次 一、 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 文獻回顧 3
1-3-1 電磁式旋轉發電機 3
1-3-2 不同換能機制 4
1-4 軟性、可伸縮電子元件 5
1-4-1 非液態金屬元件 5
1-4-2 液態金屬元件 7
1-5 論文架構 9
二、 基礎理論 10
2-1 發電機運動方程式 10
2-2 線圈感應電壓、繞組因數 12
2-3 材料性質 18
2-3-1 液態金屬(eGaInSn) 18
2-3-2 PDMS 19
三、 元件設計與製程 21
3-1 線圈路徑規劃 21
3-1-1 設計參數 21
3-1-2 線圈纏繞方式 22
3-1-3 運用繞組因數 23
3-1-4 端子路徑 26
3-2 製程介紹 27
3-2-1 金屬直寫壓力設定 27
3-2-2 直寫基板製備 29
3-2-3 液態金屬清潔方法 31
3-2-4 線路密封、薄膜組裝 32
3-2-5 端子連接導線 35
3-2-6 雙層線圈製作程序 36
3-2-7 線圈各層結構介紹 38
3-2-8 線圈線寬量測 39
四、 發電模擬 40
4-1 模擬設定 40
4-2 模擬結果、分析 46
五、 實驗架設與量測 53
5-1 實驗架設 53
5-2 電力調節電路 56
5-3 實驗結果 60
六、 結論與未來展望 65
七、 參考文獻 66
參考文獻 1. 馮耀鋆,「三維導電微成型技術開發應用於微機電系統之研究」,國立中央大學,博士論文,民國107年。
2. Romero, E., M. Neuman, and R. Warrington, "Rotational energy harvester for body motion", 2011 IEEE 24th international conference on micro electro mechanical systems, 2011 IEEE, p. 1325-1328.
3. Halim, M., et al., "An electromagnetic rotational energy harvester using sprung eccentric rotor, driven by pseudo-walking motion", Applied Energy, 2018. 217: p. 66-74.
4. Miyoshi, T., et al. "Low-profile rotational electret generator using print circuit board for energy harvesting from arm swing", 2018 IEEE Micro Electro Mechanical Systems (MEMS), 2018 IEEE, p.230-232.
5. Xu, R., et al., "Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates", Extreme Mechanics Letters, 2014, 1: p. 120-126.
6. Larmagnac, A., et al., "Stretchable electronics based on Ag-PDMS composites", Scientific reports, 2014. 4(1): p. 1-7.
7. Jeong, Y.R., et al., "A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities" NPG Asia Materials, 2017. 9(10): p. e443-e443.
8. Kim, S., et al., "Consistent and reproducible direct ink writing of eutectic gallium–indium for high-quality soft sensors", Soft robotics, 2018. 5(5): p. 601-612.
9. Yeatman, E., "Energy harvesting from motion using rotating and gyroscopic proof masses", Proceedings of The Institution of Mechanical Engineers Part C-journal of Mechanical Engineering Science - PROC INST MECH ENG C-J MECH E, 2008. 222.
10. Kamper, M.J., R.-J. Wang, and F.G. Rossouw, "Analysis and performance of axial flux permanent-magnet machine with air-cored nonoverlapping concentrated stator windings", IEEE Transactions on Industry Applications, 2008. 44(5): p. 1495-1504.
11. Wang, X., et al., "Electromagnetic design and analysis of axial flux permanent magnet generator with unequal-width PCB winding", IEEE Access, 2019. 7: p. 164696-164707.
12. Zrnic, D. and D. Swatik, "On the resistivity and surface tension of the eutectic alloy of gallium and indium", Journal of the less common metals, 1969. 18(1): p. 67-68.
13. Liu, T., P. Sen, and C.-J. Kim, "Characterization of nontoxic liquid-metal alloy galinstan for applications in microdevices", Journal of Microelectromechanical Systems, 2011. 21(2): p. 443-450.
14. Neumann, T. and M. Dickey, "Liquid Metal Direct Write and 3D Printing: A Review", Advanced Materials Technologies, 2020. 5: p. 2000070.
15. Cook, A., et al., "Shear‐Driven Direct‐Write Printing of Room Temperature Gallium‐Based Liquid Metal Alloys", Advanced Engineering Materials, 2019. 21.
16. Cordero, R., et al., "Micro-rotational electromagnetic generator for high speed applications", 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), 2012 IEEE, p. 1257-1260.
17. Dickey, M., et al., "Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature", Advanced Functional Materials, 2008. 18, p. 1097-1104.
18. Ma, R., Y. Zhou, and J. Liu, "Erasing and Correction of Liquid Metal Printed Electronics Made of Gallium Alloy Ink from the Substrate.", arXiv
preprint arXiv:1706.01457, 2017.
19. Boley, J., et al., "Direct Writing of Gallium-Indium Alloy for Stretchable Electronics", Advanced Functional Materials, 2014, p. 3501-3507.
20. Gannarapu, A. and B.A. Gozen, "Freeze-Printing of Liquid Metal Alloys for Manufacturing of 3D, Conductive, and Flexible Networks", Advanced Materials Technologies, 2016. 1(4): p. 1600047.
21. Tanzawa, T., "Design of DC-DC switched-capacitor voltage multiplier driven by DC energy transducer", 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014 IEEE, p. 327-330.
22. Vinko, D., "Applicability of Dickson Charge Pump in Energy Harvesting Systems: Experimental Validation of Energy Harvesting Charge Pump Model", Radioengineering, 2018. 27(2): p. 511.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2021-5-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明