博碩士論文 108521028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.15.145.236
姓名 楊士陞(Shih-Sheng Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鎵高電子遷移率電晶體之低頻雜訊探討與功率放大器應用
(Low-Frequency Noise Characterization of AlGaN/GaN HEMTs and Design of GaN Doherty Power Amplifier)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以氮化鎵(GaN)高電子遷移率電晶體(HEMT)進行元件低頻雜訊特性與應用於Sub-6 GHz單晶片微波積體電路(MMIC)功率放大器研究。透過雜訊功率頻譜密度(power spectral density)的方式將二種氮化鎵元件(有/無p-GaN閘極層)操作於線性區進行低頻雜訊的量測,探討出元件的閃爍雜訊(flicker noise)由carrier number fluctuation機制所主導。並推導出p型氮化鎵閘極元件可能由於p-GaN閘極層的鎂向外擴散至AlGaN能障層與GaN通道層,在AlGaN/GaN介面處有相對無p-GaN閘極層有較高的缺陷密度。同時發現成長於SiC基板上之商用氮化鎵高頻元件(無p-GaN閘極層)在低頻區域下除了閃爍雜訊之外也存在產生-再結合雜訊(generation-recombination noise: g-r noise)。利用不同環境溫度測量,使用阿瑞尼斯圖的方式分析g-r noise的缺陷位置,得到位於導通帶之下0.35 ~ 0.53 eV缺陷。
另外藉由商用氮化鎵高電子遷移率電晶體製程技術設計一應用於5G通訊系統Sub-6 GHz頻段之MMIC Doherty功率放大器,測量出Doherty功率放大器操作於3.5 GHz時其輸出功率增益達11.6 dB,1-dB功率壓縮點(OP1dB)為26.9 dBm,最大輸出功率(PSAT)達33.2 dBm,功率附加效率(PAE)為24.4 %。此外,透過64-QAM正交幅度調變的數位調變訊號觀察當向量誤差失真(EVM) < -25 dB時其平均輸出功率最高可達27.7 dBm,且其鄰近通道功率比例(ACPR)為-29.7 dBc。
摘要(英) In this study, gallium nitride (GaN) high electron mobility transistor (HEMT) low-frequency noise characteristics and monolithic microwave integrated circuit (MMIC) power amplifier at Sub-6 GHz application are presented. Noise power spectral density (PSD) of two types of devices (with/without p-GaN gate layer) have been characterized in linear region by using low-frequency noise measurement, demonstrating that flicker noise of devices are dominated by carrier number fluctuation. Also, derived that devices with p-GaN gate layer show higher trap density at AlGaN/GaN interface probably due to magnesium(Mg) out-diffusing into AlGaN barrier and GaN channel. Meanwhile, devices which fabricated on SiC substrate (without p-GaN gate layer) RF devices in low-frequency region not only 1/f noise exists also accompany by generation-recombination noise (g-r noise) has been observed. In this case, devices measured at various temperature, using Arrhenius plot extracted that g-r noise originated from a trap level with 0.35 ~ 0.53 eV below conduction band.
MMIC Doherty power amplifier (DPA) operating at Sub-6 GHz for 5G communication system applications were designed based on commercial GaN HEMT process. The measured DPA exhibits power gain of 11.6 dB, 1-dB compression point (OP1dB) of 26.9 dBm, a saturated output power (PSAT) of 33.2 dBm, and a power added efficiency (PAE) of 24.4% at 3.5 GHz. Moreover, DPA can deliver maximum average power of 27.7 dBm with error vector magnitude (EVM) < -25 dB for 64-quadrature amplitude modulation (QAM) signals and adjacent channel power ratio (ACPR) of -29.7 dBc.
關鍵字(中) ★ 氮化鎵
★ 高電子遷移率電晶體
★ 低頻雜訊
★ 功率放大器
關鍵字(英)
論文目次 中文摘要 x
Abstract xi
致謝 xii
目錄 xiii
圖目錄 xv
表目錄 xxi
第一章 緒論 1
1.1 氮化鋁鎵/氮化鎵材料特性 1
1.2 氮化鎵高頻元件之回顧 5
1.3 氮化鎵元件之低頻雜訊文獻回顧與應用 8
1.4 氮化鎵元件應用於射頻電路現況與文獻回顧 10
1.5 研究動機與論文架構 14
第二章 AlGaN/GaN HEMT於不同基板上之低頻雜訊分析 15
2.1 元件佈局設計 15
2.1.1 AlGaN/GaN HEMT on SiC不同背向穿孔布局設計元件 15
2.1.2 AlGaN/GaN HEMT on SiC不同閘極-源極距離大小元件 17
2.1.3 AlGaN/GaN MIS-HEMT on Si不同閘極寬度大小元件 18
2.1.4 p-GaN gate AlGaN/GaN HEMT on Si元件 19
2.1.5 p-GaN gate AlGaN/GaN HEMT on Si加一源極場板元件 20
2.2 元件直流和高頻特性 22
2.3 元件之電流崩塌分析 28
2.4 元件之低頻雜訊量測及分析 39
2.4.1 低頻雜訊介紹 40
2.4.2 McWhorter’s model (Carrier Number Fluctuation) 43
2.4.3 Hooge’s mobility Fluctuation model 44
2.4.4 低頻雜訊量測與分析 (1/f Noise量測) 45
2.4.5 AlGaN/GaN HEMT元件之低頻產生-再結合雜訊分析 53
2.5 本章總結 56
第三章 Sub-6 GHz氮化鎵單片微波積體電路Doherty功率放大器設計 58
3.1 功率放大器基本原理與非線性效應 58
3.1.1 功率放大器設計原理 58
3.1.2 功率放大器非線性效應 60
3.2 Doherty功率放大器工作原理 65
3.3 應用於Sub-6 GHz之單級Doherty功率放大器 68
3.4 本章總結 79
第四章 結論 80
參考文獻 81
附錄 A. 應用於Ka-Band GaAs MMIC pHEMT Two-Stage Doherty功率放大器 86
附錄 A. 參考文獻 93
Publication/Acknowledgement 94
參考文獻 [1] A. S. Khaja, “Diffusion Soldering for the High-temperature Packaging of Power Electronics,” FAU Studien aus dem Maschinenbau,” Feb. 2019
[2] T. Boles, “GaN-on-Silicon – Present capabilities and future directions,” AIP Conference Proceedings, vol. 1934, no. 1, p. 020001, Feb. 2018
[3] K. Benson, “GaN Breaks Barriers—RF Power Amplifiers Go Wide and High,” Analog Dialogue, vol.51, no. 9, Sep, 2017
[4] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[5] J. S. Moon, B. Grabar, J. Wong, D. Chuong, E. Arkun, D. V. Morales, P. Chen, C. Malek, D. Fanning, N. Venkatesan, and P. Fay, “Power Scaling of Graded-Channel GaN HEMTs With Mini-Field-Plate T-gate and 156 GHz fT,” IEEE Electron Device Lett., vol. 42, no. 6, pp. 796-799, June. 2021.
[6] C.-W. Tsou, C.-Y. Lin, Y.-W. Lian, and S. S. Hsu, “101-GHz InAlN/GaN HEMTs on Silicon With High Johnson’s Figure-of-Merit,” IEEE Trans. Electron Devices., vol. 62, no. 8, pp. 2675–2678, Aug. 2015.
[7] A. Jerng, C.G. Sodini, “The impact of device type and sizing on phase noise mechanisms,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 360 -369, Feb. 2005.
[8] T. N. T. Do, A. Malmros, P. Gamarra, C. Lacam, M. D. Forte-Poisson, M. Tordjman, M. Horberg, R. Aubry, and N. Rorsman, D. Kuylenstierna, “Effects of Surface Passivation and Deposition Methods on the 1/f Noise Performance of AlInN/AlN/GaN High Electron Mobility Transistors,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 315-317, Apr. 2015.
[9] Y. Q. Chen, Y. C. Zhang, Y. Liu, X. Y. Liao, Y. F. En, W. X. Fang, and Y. Huang, “Effect of Hydrogen on Defects of AlGaN/GaN HEMTs Characterized by Low-Frequency Noise,” IEEE Trans. Electron Devices, vol. 65, no. 4, pp. 1321–1326, Apr. 2018.
[10] P. Wang, R. Jiang, J. Chen, E. X. Zhang, M. W. McCurdy, R. D. Schrimpf, and D. M. Fleetwood, “1/f Noise in As-Processed and Proton-Irradiated AlGaN/GaN HEMTs Due to Carrier Number Fluctuations,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp.181–188, Jan. 2017.
[11] Y. Wang, L. –H. Wang, J. –H. Ge, B. Ai, “An Efficient Nonlinear Companding Transform for Reducing PAPR of OFDM Signals”, IEEE Trans. Broadcast, vol. 58, no. 4, pp. 677-684, Dec. 2012
[12] Qorvo Inc., “Gallium Nitride – A Critical Technology for 5G,” Dec. 2016 [Online]. Available : https://www.qorvo.com/resources/d/qorvo-gallium-nitiride-gan-a-critical-technology-for-5g-white-paper
[13] 拓墣產研,2018年11月。GaN 在 5G 射頻應用將脫穎而出。科技新報。 [Online]. Available : https://technews.tw/2018/11/06/gan-5g/
[14] MPS Inc., “Analog Signals vs. Digital Signals,” [Online]. Available : https://www.monolithicpower.com/en/analog-vs-digital-signal
[15] 鍾易男, “高頻氮化鋁鎵氮化鎵高速電子遷移率電晶體佈局設計及特性分析,” 碩士論文, June 2019
[16] 賴育辰, “整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體,” 碩士論文, June 2020
[17] Y. N. Zhong, Y. M. Hsin, “Thermal analysis of GaN-on-SiC HEMTs with different backside via layouts”, Jpn. J. Appl. Phys., vol.58, SCCD24. 2019
[18] Y. K. Yadav, B. B. Upadhyay, J. Jha, S. Ganguly, and D. Saha, “Impact of Relative Gate Position on DC and RF Characteristics of High Performance AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices., vol. 67, no. 10, pp. 4141–4146, Oct. 2020.
[19] W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, M. Yamaguchi, “Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 659-661, July. 2010.
[20] M. Plakhotnyuk “Nanostructured Heterojunction Crystalline Silicon Solar Cells with Transition Metal Oxide Carrier Selective Contacts,” DTU Nanotech Department of Micro- and Nanotechnology, May. 2018.
[21] T. Goudon, V. Miljanovic, and C. Schmeiser, “ON THE SHOCKLEY–READ–HALL MODEL: GENERATION-RECOMBINATION IN SEMICONDUCTORS,” SIAM J. Appl. Math., vol. 67, no. 4, pp. 1183-1201, 2007
[22] B. Razavi. (2011), RF Microelectronics 2nd Edition., Prentice-Hall
[23] G. GHIBAUD, O. Roux, C. NGUYEN-DUC, F. BALESTRA, and J. BRINI, “Improved Analysis of Low Frequency Noise in Field-Effect MOS Transistors,” Phys. Status. Solidi A, vol. 124, no. 2, pp. 571–581, Apr. 1991.
[24] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme,“Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479–532, May. 1981.
[25] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f Noise in MOS Devices, Mobility or Number Fluctuations?” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 1936–1945, Nov. 1994.
[26] F. N. Hooge, “Discussion of recent experiments on 1/f noise,” Physica ,vol. 60, no. 1, pp. 130-144, July. 1972
[27] K. Takakura, V. Putcha, E. Simoen, A. R. Alian, U. Peralagu, N. Waldron, B. Parvais, and N. Collaert, “Low-Frequency Noise Investigation of GaN/AlGaN Metal–Oxide–Semiconductor High-Electron-Mobility Field-Effect Transistor With Different Gate Length and Orientation,” IEEE Trans. Electron Devices., vol. 67, no. 8, pp. 3062–3068, Aug. 2020.
[28] Q. Hu, C. Gu, D. Zhan, X. Li, and Y. Wu, “Improved Low-Frequency Noise in Recessed-Gate E-Mode AlGaN/GaN MOS-HEMTs Under Electrical and Thermal Stress,” IEEE Journal of the Electron Devices Society, vol. 9, pp.511-516, Apr. 2021.
[29] N. E. Posthuma, H. Liang, X. Kang, D. Wellekens, Y. N. Saripalli, and S. Decoutere, “Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance,” 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, Czech Republic, 12–16 June 2016; pp. 95 – 98
[30] J. J. Dai, T. T. Mai, S.-K. Wu, J.-R. Peng, C.-W. Liu, H.-C. Wen, W.-C. Chou, H.-C. Ho, and W.-F. Wang, “High Hole Concentration and Diffusion Suppression of Heavily Mg-Doped p-GaN for Application in Enhanced-Mode GaN HEMT,” Nanomaterials 2021, 11, 1766.
[31] P. Martyniuk, J. Wrobel, E. Plis, P. Madejczyk, A. Kowalewski, W. Gawron, S. Krishna, and A. Rogalski, “Performance modeling of MWIR InAs/GaSb/B–Al0.2Ga0.8Sb type-II superlattice nBn detector,” Semicond. Sci. Technol. 27 055002.
[32] M. Meneghini, I. Rossetto, D. Bisi, A. Stocco, A. Chini, A. Pantellini, C. Lanzieri, A. Nanni, G. Meneghesso, and E. Zanoni, “Buffer Traps in Fe-Doped AlGaN/GaN HEMTs: Investigation of the Physical Properties Based on Pulsed and Transient Measurements,” IEEE Trans. Electron Devices., vol. 61, no. 12, pp. 4070–4077, Dec. 2014.
[33] N. K. Subramani, J. Couvidat, A. A. Hajjar, J.-C. Nallatamby, R. Sommet, and R. Quere., “Identification of GaN Buffer Traps in Microwave Power AlGaN/GaN HEMTs Through Low Frequency S-Parameters Measurements and TCAD-Based Physical Device Simulations,” IEEE Journal of the Electron Devices Society, vol. 5, pp.175-181, May. 2017.

[34] National Instruments., “Optimizing IP3 and ACPR Measurements,” [Online]. Available : https://www.ni.com/pdf/en/Optimizing_IP3_and_ACPR_Measurements_With_the_PXIe_5668R.pdf
[35] D. Kuylenstierna, S. E. Gunnarsson, and H. Zirath, “Lumped-element quadrature power splitters using mixed right/left-handed transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 8, pp. 2616–2621, Aug. 2005.
[36] A. Seidel, J. Wagner and F. Ellinger, “3.6 GHz Asymmetric Doherty PA MMIC in 250 nm GaN for 5G Applications,” 2020 German Microwave Conference (GeMiC), Mar. 2020.
[37] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, “A Fully Integrated C-Band GaN MMIC Doherty Power Amplifier With High Efficiency and Compact Size for 5G Application,” IEEE Access., vol. 7, pp. 71665-71674, May. 2019.
[38] G. Nikandish, R. B. Staszeski, and A. Zhu, “Bandwidth Enhancement of GaN MMIC Doherty Power Amplifiers Using Broadband Transformer-Based Load Modulation Network,” IEEE Access., vol. 7, pp. 119844-119855, Aug. 2019.
[39] S.-H. Li, S. S. H. Hsu, J. Zhang, and K.-C. Huang, “Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5676–5684, Dec. 2018.
[1] D. M. Pozar. (2012), Microwave Engineering. 4th Edition, John Wiley & Sons, Inc., Hoboken.
[2] J. Curtis, A.-V. Pham, and F. Aryanfar, “Ka-band doherty power amplifier with 26.9 dBm output power, 42% peak PAE and 32% back-off PAE using GaAs PHEMTS,” IET Microw., Antennas Propag., vol. 10, no. 10, pp. 1101–1105, Jul. 2016.
[3] G. Lv, W. Chen, and Z. Feng, “A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications,” IEEE/MTT-S Int. Microw. Symp., Philadelphia, PA, USA, Jun. 2018, pp. 808–811.
[4] D. P. Nguyen, B. L. Pham, and A.-V. Pham, “A compact Ka-band integrated Doherty amplifier with reconfigurable input network,” IEEE Trans. Microw. Theory Techn., vol. 67, no.1, pp. 205–215, Jan. 2019.
[5] Y. Chen, C. N. Chen, C. C. Chion , and H. Wang, “A Compact 40-GHz Doherty Power Amplifier With 21% PAE at 6-dB Power Back Off in 0.1-μm GaAs pHEMT Process”, IEEE Microw. Wireless Compon. Lett. vol. 29, no.8, pp.545–547, Aug. 2019.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2021-9-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明