參考文獻 |
[1] A. S. Khaja, “Diffusion Soldering for the High-temperature Packaging of Power Electronics,” FAU Studien aus dem Maschinenbau,” Feb. 2019
[2] T. Boles, “GaN-on-Silicon – Present capabilities and future directions,” AIP Conference Proceedings, vol. 1934, no. 1, p. 020001, Feb. 2018
[3] K. Benson, “GaN Breaks Barriers—RF Power Amplifiers Go Wide and High,” Analog Dialogue, vol.51, no. 9, Sep, 2017
[4] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[5] J. S. Moon, B. Grabar, J. Wong, D. Chuong, E. Arkun, D. V. Morales, P. Chen, C. Malek, D. Fanning, N. Venkatesan, and P. Fay, “Power Scaling of Graded-Channel GaN HEMTs With Mini-Field-Plate T-gate and 156 GHz fT,” IEEE Electron Device Lett., vol. 42, no. 6, pp. 796-799, June. 2021.
[6] C.-W. Tsou, C.-Y. Lin, Y.-W. Lian, and S. S. Hsu, “101-GHz InAlN/GaN HEMTs on Silicon With High Johnson’s Figure-of-Merit,” IEEE Trans. Electron Devices., vol. 62, no. 8, pp. 2675–2678, Aug. 2015.
[7] A. Jerng, C.G. Sodini, “The impact of device type and sizing on phase noise mechanisms,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 360 -369, Feb. 2005.
[8] T. N. T. Do, A. Malmros, P. Gamarra, C. Lacam, M. D. Forte-Poisson, M. Tordjman, M. Horberg, R. Aubry, and N. Rorsman, D. Kuylenstierna, “Effects of Surface Passivation and Deposition Methods on the 1/f Noise Performance of AlInN/AlN/GaN High Electron Mobility Transistors,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 315-317, Apr. 2015.
[9] Y. Q. Chen, Y. C. Zhang, Y. Liu, X. Y. Liao, Y. F. En, W. X. Fang, and Y. Huang, “Effect of Hydrogen on Defects of AlGaN/GaN HEMTs Characterized by Low-Frequency Noise,” IEEE Trans. Electron Devices, vol. 65, no. 4, pp. 1321–1326, Apr. 2018.
[10] P. Wang, R. Jiang, J. Chen, E. X. Zhang, M. W. McCurdy, R. D. Schrimpf, and D. M. Fleetwood, “1/f Noise in As-Processed and Proton-Irradiated AlGaN/GaN HEMTs Due to Carrier Number Fluctuations,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp.181–188, Jan. 2017.
[11] Y. Wang, L. –H. Wang, J. –H. Ge, B. Ai, “An Efficient Nonlinear Companding Transform for Reducing PAPR of OFDM Signals”, IEEE Trans. Broadcast, vol. 58, no. 4, pp. 677-684, Dec. 2012
[12] Qorvo Inc., “Gallium Nitride – A Critical Technology for 5G,” Dec. 2016 [Online]. Available : https://www.qorvo.com/resources/d/qorvo-gallium-nitiride-gan-a-critical-technology-for-5g-white-paper
[13] 拓墣產研,2018年11月。GaN 在 5G 射頻應用將脫穎而出。科技新報。 [Online]. Available : https://technews.tw/2018/11/06/gan-5g/
[14] MPS Inc., “Analog Signals vs. Digital Signals,” [Online]. Available : https://www.monolithicpower.com/en/analog-vs-digital-signal
[15] 鍾易男, “高頻氮化鋁鎵氮化鎵高速電子遷移率電晶體佈局設計及特性分析,” 碩士論文, June 2019
[16] 賴育辰, “整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體,” 碩士論文, June 2020
[17] Y. N. Zhong, Y. M. Hsin, “Thermal analysis of GaN-on-SiC HEMTs with different backside via layouts”, Jpn. J. Appl. Phys., vol.58, SCCD24. 2019
[18] Y. K. Yadav, B. B. Upadhyay, J. Jha, S. Ganguly, and D. Saha, “Impact of Relative Gate Position on DC and RF Characteristics of High Performance AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices., vol. 67, no. 10, pp. 4141–4146, Oct. 2020.
[19] W. Saito, Y. Kakiuchi, T. Nitta, Y. Saito, T. Noda, H. Fujimoto, A. Yoshioka, T. Ohno, M. Yamaguchi, “Field-Plate Structure Dependence of Current Collapse Phenomena in High-Voltage GaN-HEMTs,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 659-661, July. 2010.
[20] M. Plakhotnyuk “Nanostructured Heterojunction Crystalline Silicon Solar Cells with Transition Metal Oxide Carrier Selective Contacts,” DTU Nanotech Department of Micro- and Nanotechnology, May. 2018.
[21] T. Goudon, V. Miljanovic, and C. Schmeiser, “ON THE SHOCKLEY–READ–HALL MODEL: GENERATION-RECOMBINATION IN SEMICONDUCTORS,” SIAM J. Appl. Math., vol. 67, no. 4, pp. 1183-1201, 2007
[22] B. Razavi. (2011), RF Microelectronics 2nd Edition., Prentice-Hall
[23] G. GHIBAUD, O. Roux, C. NGUYEN-DUC, F. BALESTRA, and J. BRINI, “Improved Analysis of Low Frequency Noise in Field-Effect MOS Transistors,” Phys. Status. Solidi A, vol. 124, no. 2, pp. 571–581, Apr. 1991.
[24] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme,“Experimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, no. 5, pp. 479–532, May. 1981.
[25] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f Noise in MOS Devices, Mobility or Number Fluctuations?” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 1936–1945, Nov. 1994.
[26] F. N. Hooge, “Discussion of recent experiments on 1/f noise,” Physica ,vol. 60, no. 1, pp. 130-144, July. 1972
[27] K. Takakura, V. Putcha, E. Simoen, A. R. Alian, U. Peralagu, N. Waldron, B. Parvais, and N. Collaert, “Low-Frequency Noise Investigation of GaN/AlGaN Metal–Oxide–Semiconductor High-Electron-Mobility Field-Effect Transistor With Different Gate Length and Orientation,” IEEE Trans. Electron Devices., vol. 67, no. 8, pp. 3062–3068, Aug. 2020.
[28] Q. Hu, C. Gu, D. Zhan, X. Li, and Y. Wu, “Improved Low-Frequency Noise in Recessed-Gate E-Mode AlGaN/GaN MOS-HEMTs Under Electrical and Thermal Stress,” IEEE Journal of the Electron Devices Society, vol. 9, pp.511-516, Apr. 2021.
[29] N. E. Posthuma, H. Liang, X. Kang, D. Wellekens, Y. N. Saripalli, and S. Decoutere, “Impact of Mg out-diffusion and activation on the p-GaN gate HEMT device performance,” 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Prague, Czech Republic, 12–16 June 2016; pp. 95 – 98
[30] J. J. Dai, T. T. Mai, S.-K. Wu, J.-R. Peng, C.-W. Liu, H.-C. Wen, W.-C. Chou, H.-C. Ho, and W.-F. Wang, “High Hole Concentration and Diffusion Suppression of Heavily Mg-Doped p-GaN for Application in Enhanced-Mode GaN HEMT,” Nanomaterials 2021, 11, 1766.
[31] P. Martyniuk, J. Wrobel, E. Plis, P. Madejczyk, A. Kowalewski, W. Gawron, S. Krishna, and A. Rogalski, “Performance modeling of MWIR InAs/GaSb/B–Al0.2Ga0.8Sb type-II superlattice nBn detector,” Semicond. Sci. Technol. 27 055002.
[32] M. Meneghini, I. Rossetto, D. Bisi, A. Stocco, A. Chini, A. Pantellini, C. Lanzieri, A. Nanni, G. Meneghesso, and E. Zanoni, “Buffer Traps in Fe-Doped AlGaN/GaN HEMTs: Investigation of the Physical Properties Based on Pulsed and Transient Measurements,” IEEE Trans. Electron Devices., vol. 61, no. 12, pp. 4070–4077, Dec. 2014.
[33] N. K. Subramani, J. Couvidat, A. A. Hajjar, J.-C. Nallatamby, R. Sommet, and R. Quere., “Identification of GaN Buffer Traps in Microwave Power AlGaN/GaN HEMTs Through Low Frequency S-Parameters Measurements and TCAD-Based Physical Device Simulations,” IEEE Journal of the Electron Devices Society, vol. 5, pp.175-181, May. 2017.
[34] National Instruments., “Optimizing IP3 and ACPR Measurements,” [Online]. Available : https://www.ni.com/pdf/en/Optimizing_IP3_and_ACPR_Measurements_With_the_PXIe_5668R.pdf
[35] D. Kuylenstierna, S. E. Gunnarsson, and H. Zirath, “Lumped-element quadrature power splitters using mixed right/left-handed transmission lines,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 8, pp. 2616–2621, Aug. 2005.
[36] A. Seidel, J. Wagner and F. Ellinger, “3.6 GHz Asymmetric Doherty PA MMIC in 250 nm GaN for 5G Applications,” 2020 German Microwave Conference (GeMiC), Mar. 2020.
[37] G. Lv, W. Chen, X. Liu, F. M. Ghannouchi and Z. Feng, “A Fully Integrated C-Band GaN MMIC Doherty Power Amplifier With High Efficiency and Compact Size for 5G Application,” IEEE Access., vol. 7, pp. 71665-71674, May. 2019.
[38] G. Nikandish, R. B. Staszeski, and A. Zhu, “Bandwidth Enhancement of GaN MMIC Doherty Power Amplifiers Using Broadband Transformer-Based Load Modulation Network,” IEEE Access., vol. 7, pp. 119844-119855, Aug. 2019.
[39] S.-H. Li, S. S. H. Hsu, J. Zhang, and K.-C. Huang, “Design of a compact GaN MMIC Doherty power amplifier and system level analysis with X-parameters for 5G communications,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12, pp. 5676–5684, Dec. 2018.
[1] D. M. Pozar. (2012), Microwave Engineering. 4th Edition, John Wiley & Sons, Inc., Hoboken.
[2] J. Curtis, A.-V. Pham, and F. Aryanfar, “Ka-band doherty power amplifier with 26.9 dBm output power, 42% peak PAE and 32% back-off PAE using GaAs PHEMTS,” IET Microw., Antennas Propag., vol. 10, no. 10, pp. 1101–1105, Jul. 2016.
[3] G. Lv, W. Chen, and Z. Feng, “A compact and broadband Ka-band asymmetrical GaAs Doherty power amplifier MMIC for 5G communications,” IEEE/MTT-S Int. Microw. Symp., Philadelphia, PA, USA, Jun. 2018, pp. 808–811.
[4] D. P. Nguyen, B. L. Pham, and A.-V. Pham, “A compact Ka-band integrated Doherty amplifier with reconfigurable input network,” IEEE Trans. Microw. Theory Techn., vol. 67, no.1, pp. 205–215, Jan. 2019.
[5] Y. Chen, C. N. Chen, C. C. Chion , and H. Wang, “A Compact 40-GHz Doherty Power Amplifier With 21% PAE at 6-dB Power Back Off in 0.1-μm GaAs pHEMT Process”, IEEE Microw. Wireless Compon. Lett. vol. 29, no.8, pp.545–547, Aug. 2019. |