博碩士論文 106323075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.191.20
姓名 何佳宜(Jia-Yi He)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 組織工程應用之三維曲線列印─ 以皮膚傷口外形為例
(3D Curve Printing for Tissue Engineering Applications ── A Case Study of Wound Shapes in Skin)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-25以後開放)
摘要(中) 常見人工皮膚為大量生成製造而成,於移植過程中需修剪外形以符合病患傷口,如此勢必有殘留部分材料,本論文著重於針對皮膚傷口外形製作出符合該外形之皮膚物件,並以還原皮膚結構加強人工皮膚結構穩固為目標,客製化人工皮膚以減少被修飾的材料損耗。
本論文將運用3D生物列印之技術客製化人工皮膚之製作,傳統以水平層積方式印製人工皮膚,但皮膚為曲面構造,印製而成的人工皮膚結構強度會因為其層積方式而下降,為此本論文將使用順著傷口外形之曲線層積路徑列印方式印製人工皮膚。該方法使用固狀底座以符合該傷口底部特徵,將欲印製人工皮膚置於底座之上列印,硬質底座可配合水凝膠的質地如果凍易塌陷特性,保有傷口之外觀特性。藉由X方向切層與Y方向切層所獲得之路徑生成,綜合兩者路徑以組合出網狀結構。並可由使用者對該路徑生成內部數據做細微調整以達使用者所需。生成之路徑可為模擬皮膚結構分別生成真皮層路徑與表皮層路徑,使用水凝膠與兩種細胞混合印製,接續後續的生物實驗。
本實驗列印成果可分為兩個,其一以水平面層積方式列印網格狀的鼻子,其二使用曲線層積方式列印人工皮膚,證明該曲線層積列印路徑於不平整表面且能完整將該物件列印成功。發展出四種定位方式,以利傷口支撐底座於列印座標中定位,確認該傷口實際列印位置正確且不發生碰撞。然該成功案例僅限於實心之物件,對於中空物件恐有錯誤產生。在於表皮層之列印成果產生凹洞之非預期狀況,此路徑生成方式仍待改善。
摘要(英) Common artificial skin is produced in large quantities, and the shape of the artificial skin needs to be trimmed to fit the patient’s wound during the transplantation process, so there is bound to be some residual material.This thesis focuses on making skin objects conforming to the shape of the skin wound, and aims to restore the skin structure to strengthen the stability of the artificial skin structure.Customized production of artificial skin to reduce the loss of modified materials.
This paper will use the technology of 3D bioprinting to make customized artificial skin. However, the skin has a curved structure, and the strength of the printed artificial skin structure will decrease due to its layering method. For this reason, this paper will print artificial skin using the printing method of curve layered path that follows the shape of the wound. This method uses a solid base to match the characteristics of the bottom of the wound, and places the artificial skin to be printed on the base. The hard base can be matched with the texture of the hydrogel, which is easy to collapse like a jelly, and retains the appearance of the wound. Generate the path obtained by cutting in the X direction and the Y direction, combining the two paths to form a network structure. And the user can make fine adjustments to the internal data generated by the path, which has reached the user′s needs. The generated path can be to simulate the skin structure to generate the dermis path and the epidermis path respectively, using a mixture of hydrogel and two kinds of cells to print, and continue the subsequent biological experiments.
The printing results of this experiment can be divided into two, the first is to print the grid-like nose in the horizontal layering method, and the second is to use the curve layering method to print the artificial skin, which proves the printing path of the curved layer base which can be printed successfully on uneven surfaces. Four positioning methods have been developed to facilitate the positioning of the wound support base in the printing coordinates to confirm that the actual printing position of the wound is correct and does not collide. However, the successful case is limited to solid objects, and there may be errors in hollow objects. Because of the unexpected situation that the printing result of the skin layer produces cavities, the path generation method still needs to be improved.
關鍵字(中) ★ 組織工程
★ 積層製造
★ 曲線列印
★ 3D生物列印
★ 人工皮膚
關鍵字(英) ★ Tissue engineering
★ Additive manufacturing
★ Curve printing
★ 3D bioprinting
★ Artificial skin
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1-1 背景 1
1-2 文獻回顧 4
1-3 研究動機與目的 16
1-4 論文大綱 18
第二章 積層製造之路徑生成理論與其資料結構 19
2-1 擠出型之積層製造的路徑生成 19
2-2 列印路徑資料結構 21
2-3 曲線層積路徑生成方式整理 23
2-4 切層輪廓資料之來源結構 24
2-5 座標系統間之轉換關係 25
第三章 資料結構建立與路徑生成規劃 28
3-1 人工皮膚之傷口模型取得 28
3-2 擠出型積層製造之物件資料結構 29
3-3 水平層積路徑生成 33
3-4 曲線層積路徑生成 40
3-5 曲線層積列印路徑與底座的碰撞偵測 53
3-6 曲線列印之底座與皮膚傷口於列印座標中的定位 54
3-7 列印路徑翹起狀況處理 58
第四章 實驗結果 63
4-1 人機介面功能與使用流程之介紹 63
4-4 3D生物列印機台介紹 68
4-3 模擬成果與印製成果 69
第五章 總結與未來展望 74
5-1 總結 74
5-2 未來展望 75
參考文獻 77
參考文獻 [1] Robert Langer and Joseph P. Vacanti, “Tissue Engineering,” Science, Vol. 206, pp. 920-926, August 1993.
[2] Erin Lavik and Robert Langer, “Tissue engineering: current state and perspectives,” Applied Microbiology and Biotechnology, Vol. 65, pp. 1-8, 2004.
[3] K.Tuzlakoglu, N.Bolgen, A.J.Salgado, M.E.Gomes, E.Piskin and R.L.Reis , “Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering,” Journal of Materials Science: Materials in Medicine, Vol. 16, p. 1099–1104, December 2005.
[4] Ju Hyeong Jeon, Manjari Bhamidipati, BanuPriya Sridharan, Aaron M. Scurto, Cory J.Berkland and Michael S. Detamore, “Tailoring of processing parameters for sintering microsphere‐based scaffolds with dense‐phase carbon dioxide,” Journal of Biomedical Materials Research Part B Applied Biomaterials , Vol.10, p. 330–337, October 2012.
[5] Soo Won Suh, Ji Youn Shin, Jinhoon Kim, Jhingook Kim, Chung Hwan Beak, Dong-Ik Kim, Hojoong Kim,Seong Soo Jeon and In-Wook Choo“Effect of Different Particles on Cell Proliferation in Polymer Scaffolds Using a Solvent-Casting and Particulate Leaching Technique,” ASAIO Journal, Vol. 48, pp. 460-464, October 2002.
[6] Jung-Chen Lin, Chen-Ying Chien, Chi-Long Lin, Bing-Yu Yao, Yuan-I Chen, Yu-Han Liu1, Zih-Syun Fang,Jui-Yi Chen, Wei-ya Chen, No-No Lee, Hui-Wen Chen and Che-Ming J. Hu, “Intracellular hydrogelation preserves fluid and functional cell membrane interfaces for biological interactions,” Nature Communications, Vol. 10, , March 2019.
[7] S. MacNeil, “Progress and opportunities for tissue-engineered skin,” Nature, Vol. 445, p. 874–880, February 2007.
[8] Soroosh Derakhshanfar, Rene Mbeleck, Kaige Xu, Xingying Zhang and Wen Zhong, “3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances,” Bioactive Materials, Vol. 3, pp. 144-156, June 2018.
[9] Yong He, FeiFeiYang, HaiMingZhao, QingGao, BingXia and JianZhong Fu, “Research on the Printability of Hydrogels in 3D Bioprinting,” Scientific Reports, Vol. 6, Article number: 29977, July 2016.
[10] Ibrahim Ozbolat and Yin Yu, “Bioprinting Toward Organ Fabrication: Challenges and Future Trends,” IEEE Transactions on Biomedical Engineering, Vol. 60, pp. 691-699, March 2013.
[11] J. Bohandy, B. F. Kim, F. J. Adrian and A. N. Jette, “Metal Deposition at 532 nm Using a Laser Transfer Technique,” Journal of Applied Physics, Vol. 63, pp. 1538-1539, October 1986.
[12] J. T. Schulz III, R. G. Tompkins and J. F. Burke, “Artificial Skin,” Annual Review of Medicine, Vol.51, pp. 231-244, February 2000.
[13] I. V. Yannas and John F. Burke, “Design of an artificial skin. I. Basic design principles,” Journal of Biomedical Materials Research, Vol. 14, pp. 65-81, January 1980.
[14] Vivian Lee, Gurtej Singh, John P. Trasatti, Chris Bjornsson, Xiawei Xu, Thanh Nga Tran, Seung-Schik Yoo, Guohao Dai and Pankaj Karande, “Design and Fabrication of Human Skin by Three-Dimensional Bioprinting,” Tissue Engineering Part C: Methods, Vol. 20, pp. 473-484, December 2013.
[15] H.Schonhorx and L.H.Shapre, “Surface energetics, adhesion and adhesive joints. IV. Joints between epoxy adhesives and chlorotrifluoroethylene copolymer and terpolymer (aclar),” Journal of Polymer Science Part A: General Papers, Vol.3, pp. 3087-3097, September 1965.
[16] Lea J. Pourchet, Amelie Thepot, Marion Albouy, Edwin J. Courtial, Aurelie Boher, Loïc J. Blum and Christophe A. Marquette, “Human Skin 3D Bioprinting Using Scaffold-Free Approach,” Advanced Healthcare Materials, Vol. 6, , February 2017.
[17] Nieves Cubo, Marta Garcia, Juan F del Cañizo, Diego Velasco and Jose L Jorcano, “3D Bioprinting of Functional Human Skin: Production and in Vivo Analysis,” Biofabrication, Vol. 9, pp. 1-12, December 2017.
[18] Jie Xu, Shuangshuang Zheng, Xueyan Hu, Liying Li, Wenfang Li, Roxanne Parungao, Yiwei Wang, Yi Nie, Tianqing Liu and Kedong Song, “Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting,” Polymers, Vol.12, pp. 1-31, February 2020.
[19] Navid Hakimi, Richard Cheng, Lian Leng, Mohammad Sotoudehfar, Phoenix Qing Ba, Nazihah Bakhtyar, Saeid Amini-Nik, Marc G. Jeschke and Axel Günther, “Handheld skin printer: in situ formation of planar biomaterials and tissues,” Royal Society of Chmistry, Vol.18, pp. 1440-1451, March 2018.
[20] Sejeong Yoon, Ju An Park, Hwa-Rim Lee, Woong Hee Yoon, Dong Soo Hwang and Sungjune Jung, “Inkjet–Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures,” Advanced Healthcare Materials, Vol. 7, pp. 1-10, July 2018.
[21] Sha Huang, Bin Yao, Jiangfan Xe and Xiaobing Fu, “3D bioprinted extracellular matrix mimics facilitate directed differentiation of epithelial progenitors for sweat gland regeneration,” Acta Biomaterialia, Vol. 32, pp. 170-177, March 2016.
[22] Ren C. Luo, Lung Chuan Hsu, Tung Jung Hsiao and Yi Wen Perng, “3D Digital Manufacturing via Synchronous 5-Axes Printing for Strengthening Printing Parts,” IEEE Access, Vol. 8, pp. 126083-126091, June 2020.
[23] Abdullah T. Alsharhan, Timotei Centea and Satyandra K. Gupta, “Enhancing Mechanical Properties of Thin-Walled Structures Using Non-Planar Extrusion Based Additive Manufacturing,” ASME 2017 12th International Manufacturing Science and Engineering Conference collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing, , June 2017.
[24] Hongyao Shen, Bing Liu, Senxin Liu and Jianzhong Fu, “Five-Axis Freeform Surface Color Printing Technology Based on Offset Curve Path Planing Method,” MDPI: Applied Science,, October 2020.
[25] Bashir Hosseini Jafari, Nolan Walker, Ronald Smaldon and Nicholas Gans, “Geometric Trajectory Planning for Robot Motion Over a 3D Surface,” ASME 2019 Dynamic Systems and Control Conference, Vol. 3, , October 2019.
[26] Bashir Hosseini Jafari and Nicholas Gans, “Surface Parameterization and Trajectory Generation on Regular Surfaces with Application in Robot-Guided Deposition Printing,” IEEE Robotics and Automation Letters, Vol. 5, pp. 6113-6120, October 2020.
[27] Aniruddha V. Shembekar, Yeo Jung Yoon, Alec Kanyuck and Satyandra K. Gupta, “Trajectory Planning for Conformal 3D-printing Using Non-planar Layers,” ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, , August 2018.
[28] Ioanna Mitropoulou, Mathias Bernhard and Benjamin Dillenburger, “Print Paths Key-framing,” SCF ′20: Symposium on Computational Fabrication, November 2020.
[29] Rhinoceros 7.0 官方網站: https://www.rhino3d.com/download/Rhino/7.0
[30] Daniel Ahlers, Florens Wasserfall, Norman Hendrich and Jianwei Zhang, “3D Printing of Nonplanar Layers for Smooth Surface Generation,” 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), pp. 1737-1743, August 2019.
[31] Ben Ezair, Saul Fuhrmann and Gershon Elber, “Volumetric Covering Print-Paths for Additive Manufacturing of 3D Models,” Computer-Aided Design, Vol. 100, pp. 1-17, May 2018.
[32] 曾竣煌,「熔融沉積成型技術之路徑規劃與提升製造效率研究」,國立中央大學,碩士論文,民國106年。
[33] Slic3r 官方網站: https://manual.slic3r.org/expert-mode/print-settings#infill-optimization
[34] Behnam Akhoundi, Mojtaba Nabipour, Faramarz Hajami, Shahab S. Band and Amir Mosavi, “Calculating Filament Feed in the Fused Deposition Modeling Process to Correctly Print Continuous Fiber Composites in Curved Paths,” Materials, Vol. 13, October 2020.
[35] 曾郁文,「雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究」,國立中央大學,碩士論文,民國103年。
[36] J. Diebel, “Representing Attitude: Euler Angles, Unit Quaternions and Rotation Vectors,” Matrix, Vol. 56, January 2006.
[37] Helix Toolkit官方網站: http://docs.helix-toolkit.org/en/latest/
[38] OpenCV官方網站: http://opencv.org
[39] EmguCV官方網站: http://www.emgu.com
[40] 洪承暉,「使用微型閥並具備自動平台校正功能之三維生物列印機開發」,國立中央大學,碩士論文,民國107年。
[41] 曾偉智,「多噴頭置換模組開發與混合式三維生物列印之研究」,國立中央大學,碩士論文,民國109年。
指導教授 廖昭仰(Chao-Yaug LIAO) 審核日期 2021-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明