博碩士論文 108323045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.135.216.24
姓名 羅曉涵(HSIAO-HAN LO)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 非對稱雙極脈衝DC濺鍍氮化鋁薄膜之電源參數實驗設計與OES大數據輔助預測殘留應力最佳化
(Residual stress classification of pulsed DC reactive sputtered aluminum nitride via large-scale data analysis of optical emission spectroscopy)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本論文研究了殘餘量對脈衝直流反應濺射製備氮化鋁(AlN)薄膜生長過程的影響。由於顯著的膜殘餘應力,可能會造成氮化鋁薄膜從基材破裂或剝離。因此,殘餘應力的控制對於機械穩定的氮化鋁薄膜的合成非常重要。另外,還分析了晶體的發展和殘餘應力與晶體的晶體學取向之間的關係。使用X射線衍射(X-ray diffraction, XRD),傅立葉變換紅外光譜(Fourier transform infrared spectroscopy, FTIR),透射電子顯微鏡(Transmission electron microscope, TEM)和掃描電子顯微鏡(Scanning electron microscope, SEM)來測量氮化鋁薄膜的晶體結構,厚度和殘餘應力。結果表明,氮化鋁在不同的沉積條件下具有不同的結構和應力特性。此外,在本研究中使用主成分分析(Principal Component Analysis, PCA)對原位發射光譜(Optical Emission Spectroscopy, OES)進行了分析。評估的過程參數包括脈衝直流頻率,直流功率和氣體流量比。 PC1-DEV(在第一主分量方向上的標準偏差)用於計算殘餘應力值(VRS),以準確地預測和分類沉積膜的應力狀態,即壓縮應力或拉伸應力。應用Box-Behnken實驗設計,基於響應面法(RSM)建立了數學模型,並確定了產生最小殘餘應力的最佳條件。
摘要(英) The influence of residual amount on the growth process of aluminum nitride (AlN) thin films prepared by pulsed DC reactive sputtering was studied. The AlN film may crack or peel from the substrate due to significant film residual stress. Therefore, the control of residual stress is very important for the synthesis of mechanically stable AlN films. Additionally, the relationship between the development and residual stress and the crystallographic orientation of crystals is also analyzed. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and Scanning Electron Microscope (SEM) were used to measure the crystal structure, thickness, and residual stress in AlN films. The results show that AlN has a different structure and stress characteristics under different deposition conditions. Besides, in-situ Optical emission spectroscopy (OES) was analyzed using principal component analysis (PCA) in this study. The process parameters evaluated included pulsed DC frequency, DC power and flow gas ratio. The PC1-DEV (standard deviation in the first principal component direction) is used to calculate the value residual stress (VRS) to accurately predict and classify the stress state of the deposited film, i.e., compression stress or tensile stress. The Box-Behnken experimental design was applied, a mathematical model was established based on the response surface method (RSM), and the optimum conditions for generating the minimum residual stress were determined.
關鍵字(中) ★ 非對稱雙極脈衝
★ 氮化鋁薄膜
★ 殘留應力
★ 大數據
★ 原位發射光譜
關鍵字(英) ★ pulsed DC reactive sputtered
★ aluminum nitride
★ residual stress
★ via large-scale data
★ optical emission spectroscopy
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 4
第二章 材料與背景介紹 5
2-1 物理氣相沉積(PVD) 5
2-2 薄膜沉積原理 7
2-3 薄膜殘留應力種類與成因 9
2-4 脈衝頻率簡介 11
2-5 電漿簡介 14
2-6 光放射光譜(OES) 20
2-7 機器學習主成分分析(PCA) 22
2-8 實驗設計(DOE) 與反應曲面法(RSM) 25
第三章 研究方法 30
3-1 實驗流程 30
3-2 實驗方法 31
3-2-1參數設定 31
3-2-2試片清洗步驟 33
3-3-3試片製作 35
3-2-4實驗步驟 35
3-3 實驗裝置與量測 37
3-3-1雙極脈衝直流反應式濺鍍(Pulsed DC reactive sputtering) 37
3-3-2光放射光譜 (Optical Emission Spectroscopy,OES) 40
3-3-3穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 43
3-3-4掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 45
3-3-5傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy,FTIR) 47
3-3-6 X-射線繞射分析(X-ray diffraction, XRD) 49
3-3-7 X光繞射法量測薄膜殘留應力 51
第四章 實驗結果與討論 55
4-1 不同濺鍍參數對薄膜結構之影響 55
4-2 氮化鋁薄膜品質分析 59
4-2-1傅立葉轉換紅外光譜(FTIR)對氮化鋁薄膜分析 59
4-2-2 X-射線繞射分析(XRD)對氮化鋁薄膜分析 60
4-2-3應用XRD對薄膜殘留應力的影響 62
4-3 統計分析及優化殘餘應力 64
4-4 大量光放射光譜資料結合機器學習預測殘留應力與驗證 69
第五章 結論 73
參考文獻 74
參考文獻 [1] P. Panda, R. Ramaseshan, N. Ravi, G. Mangamma, F. Jose, S. Dash, K. Suzuki, H. Suematsu, Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique, Mater. Chem. Phys. 200 (2017) 78-84.
[2] H. Morkoç, Handbook of Nitride Semiconductors and Devices, in: Materials Properties, Phys. and Growth, Vol. 1, WILEY-VCH, Weinheim, 2008, pp. 23e30.
[3] T.S. Pan, Y. Zhang, J. Huang, B. Zeng, D.H. Hong, S.L. Wang, H.Z. Zeng, M. Gao, W. Huang, Y. Lin, Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure, J. Appl. Phys. 112(4) (2012) 044905.
[4] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, N. Kamata, 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire, Phys. Status Solidi (a) 206(6) (2009) 1176-1182.
[5] G. Okada, T. Kato, D. Nakauchi, K. Fukuda, T. Yanagida, Photochromism and Thermally and Optically Stimulated Luminescences of AlN Ceramic Plate for UV Sensing, Sens. Mater. 28 (2016) 897.
[6] N.G. Berg, T. Paskova, A. Ivanisevic, Tuning the biocompatibility of aluminum nitride, Mater. Lett. 189 (2017) 1-4.
[7] A. Taurino, M.A. Signore, M. Catalano, M.J. Kim, (1 0 1) and (0 0 2) oriented AlN thin films deposited by sputtering, Mater. Lett. 200 (2017) 18-20.
[8] F. Martin, P. Muralt, M.-A. Dubois, A. Pezous, Thickness dependence of the properties of highly c-axis textured AlN thin films, J. Vac. Sci. Technol. A 22 (2) (2004)361
[9] H. Cheng, Y. Sun, J.X. Zhang, Y.B. Zhang, S. Yuan, P. Hing, AlN films deposited under various nitrogen concentrations by RF reactive sputtering, J. Cryst. Growth 254(1-2) (2003) 46-54.
[10] S. Venkataraj, D. Severin, R. Drese, F. Koerfer, M. Wuttig, Structural, optical and mechanical properties of aluminium nitride films prepared by reactive DC magnetron sputtering, Thin Solid Films 502(1-2) (2006) 235-239.
[11] A. Mahmood, N. Rakov, M. Xiao, Influence of deposition conditions on optical properties of aluminum nitride (AlN) thin films prepared by DC-reactive magnetron sputtering, Mater. Lett. 57(13-14) (2003) 1925-1933.
[12] C.M. Zetterling, M. Östling, K. Wongchotigul, M.G. Spencer, X. Tang, C.I. Harris, N. Nordell, S.S. Wong, Investigation of aluminum nitride grown by metal–organic chemical-vapor deposition on silicon carbide, J. Appl. Phys. 82(6) (1997) 2990-2995.
[13] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56(3) (2000) 159-172.
[14] J. Sellers, Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD, Surf. Coat. Technol. 98(1-3) (1998) 1245-1250.
[15] R.K. Choudhary, P. Mishra, A. Biswas, A.C. Bidaye, Structural and Optical Properties of Aluminum Nitride Thin Films Deposited by Pulsed DC Magnetron Sputtering, ISRN Mater. Sci. 2013 (2013) 1-5.
[16] S. W. Butler, Control of plasma processes in semiconductor manufacturing, Introduction to the Proc. Workshop Ind. Appl. Plasma Chem., Low Pressure Non-Equilibrium Plasma Appl., Aug. 21–25, 1995
[17] S. W. Butler and T. F. Edgar, Case studies in equipment modeling and control in the microelectronics industry, Introduction to the Chemical Process Control —V, Proc. Fifth Int. Conf. Chem. Process Contr., CACHE, AIChE, J. Kantor, C. Garcia, and B. Carnahan, Eds., Tahoe, CA, 1996, pp. 133–144.
[18] S. Limanond, J. Si, K. Tsakalis, Monitoring and control of semiconductor manufacturing processes, IEEE Control Syst., 18(6) (1998) 46-58.
[19] H.H. Yue, S.J. Qin, R.J. Markle, C. Nauert, M. Gatto, Fault detection of plasma etchers using optical emission spectra, IEEE Trans. Semicond. Manuf. 13(3) (2000) 374-385.
[20] S.-H. Wang, H.-E. Chang, C.-C. Lee, Y.-K. Fuh, T.T. Li, Evolution of a-Si:H to nc-Si:H transition of hydrogenated silicon films deposited by trichlorosilane using principle component analysis of optical emission spectroscopy, Mater. Chem. Phys. 240 (2020) 122186.
[21] H.-J. Huang, L.-H. Kau, H.-S. Wang, Y.-L. Hsieh, C.-C. Lee, Y.-K. Fuh, T.T. Li, Large-scale data analysis of PECVD amorphous silicon interface passivation layer via the optical emission spectra for parameterized PCA, Int. J. Adv. Manuf. Technol. 101(1-4) (2018) 329-337.
[22] J. Acosta, A. Rojo, O. Salas, J. Oseguera, Process monitoring during AlN deposition by reactive magnetron sputtering, Surf Coat Tech, 201 (2007) 7992-7999.
[23] D. Escobar, R. Ospina, A.G. Gómez, E. Restrepo-Parra, Microstructure, residual stress and hardness study of nanocrystalline titanium–zirconium nitride thin films, Ceram. Int. 41(1) (2015) 947-952.
[24] R. Machunze, G.C.A.M. Janssen, Stress gradients in titanium nitride thin films, Surf. Coat. Technol. 203(5-7) (2008) 550-553.
[25] N.G. Ferreira, E. Abramof, N.F. Leite, E.J. Corat, V.J. Trava-Airoldi, Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy, J. Appl. Phys. 91(4) (2002) 2466-2472.
[26] Y. Xi, K. Gao, X. Pang, H. Yang, X. Xiong, H. Li, A.A. Volinsky, Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films, Ceram. Int. 43(15) (2017) 11992-11997.
[27] Z. Ding, G. Sun, M. Guo, X. Jiang, B. Li, S.Y. Liang, Effect of phase transition on micro-grinding-induced residual stress, J. Mater. Process Technol. 281 (2020) 116647.
[28] A. Sanz-Hervás, E. Iborra, M. Clement, J. Sangrador, M. Aguilar, Influence of crystal properties on the absorption IR spectra of polycrystalline AlN thin films, Diam. Relat. Mater. 12(3-7) (2003) 1186-1189.
[29] A. Freddi, D. Veschi, M. Bandini, G. Giovani, Design of Experiments to Investigate Residual Stresses and Fatigue Life Improvement by a Surface Treatment, Fatigue Fract. Eng. Mater. Struct. 20(8) (1997) 1147-1157.
[30] E. Maleki, O. Unal, K. Reza Kashyzadeh, Efficiency Analysis of Shot Peening Parameters on Variations of Hardness, Grain Size and Residual Stress via Taguchi Approach, Met. Mater. Int. 25(6) (2019) 1436-1447.
[31] H. Sang Jeen, G.S. May, P. Dong-Cheol, Neural network modeling of reactive ion etching using optical emission spectroscopy data, IEEE Trans. Semicond. Manuf. 16(4) (2003) 598-608.
[32] X. Jia, C. Jin, M. Buzza, W. Wang, J. Lee, Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves, Renew. Energ. 99 (2016) 1191-1201.
[33] 蕭宏,半導體製程技術導論,三版,全華圖書,新北市,2019
[34] S.H. Lee, K.H. Yoon, D.S. Cheong, J.K. Lee, Relationship between residual stress and structural properties of AlN films deposited by r.f. reactive sputtering, Thin Solid Films 435 (2003) 193–198
[35] A. Padey, S. Dutta, R. Prakash, A. K. Kapoor, D. Kaur, Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates, J. Electron. Mater. 47 1405–1413 (2018)
[36] A. Belkind, A. Freilich , J. Lopez , Z. Zhao, W. Zhu, K. Becker, Characterization of pulsed dc magnetron sputtering plasmas, New J. Phys. 7 (2005) 90
[37] H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, S. Nakano, Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz‐band surface acoustic wave devices, Appl. Phys. Lett. 64, 166 (1994)
[38] J. Lopez, W. Zhu, A. Freilich, A. Belkind, K. Becker, Time-resolved optical emission spectroscopy of pulsed DC magnetron sputtering plasmas, J. Phys. D: Appl. Phys. 38 (2005) 1769.
[39] Glow Discharge Processes: Sputtering and Plasma Etching
[40] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年
[41] Hutchinson I et al. Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
[42] R. Chodun, K. Nowakowska, K. Zdunek, Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition, Mater. SCI-Poland (2015) 33 894–901.
[43] J. Acosta, A. Rojo, O. Salas, J. Oseguera, Process monitoring during AlN deposition by reactive magnetron sputtering, Surf. Coat. Technol. (2007) 201 7992–7999.
[44] K. Pearson, On lines and planes of closest fit to systems of points in space, Philos Mag (Abingdon) (1901) 2 559–572.
[45] H. Hotelling, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol. (1993) 24, 417–441.
[46] J. Hogenboom and L. Barina, Principal component analysis and sidechannel attacks-master thesis, Master′s thesis, 2010.
[47] Sanginésa R, Abundiz-Cisnerosa N, Utrera H O, Diliegros-Godinesb C and Machorro M R 2018 J. Phys. D 51 9
[48] 葉怡成,實驗計劃法:製程與產品最佳化,一版,五南圖書出版社, 2001
[49] J.P. Kar, G. Bose, S. Tuli, Correlation of electrical and morphological properties of sputtered aluminum nitride films with deposition temperature, Curr. Appl. Phys. 6(5) (2006) 873-876.
[50] X. Jia, C. Jin, M. Buzza, W. Wang, J. Lee, Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves, Renew. Energ. 99 (2016) 1191-1201.
[51] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E. J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, J. Appl. Crystallogr. (2005) 38 1-29.
[52] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd Edition, Prentice Hall, 2001.
[53] M. Birkholz, Thin Film Analysis by X-Ray Scattering, Wiley, 2006.
[54] A. Pandeyab, S. Duttaa, R. Prakashb, S. Dalala, R. Ramana, A. K. Kapoora, D. Kaurb, Growth and evolution of residual stress of AlN films on silicon (100) wafer, Mater. Sci. Semicond. Process. (2016) 52 16-23
[55] I.A. Alhomoudi, G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film, Thin Solid Films (2009) 517 4372–4378
[56] A. Iqbal, M.Y. Faisal, Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review, Sensors (2018) Jun; 18(6): 1797.
[57] C. T. Chang, Y. C. Yang, J. W. Lee, B. S. Lou, The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering, Thin Solid Films (2014) 572 161-168
[58] Y. Xi, K. Gao, X. Pang, H. Yang, X. Xiong, H. Li, A.A. Volinsky, Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films, Ceram. Int. 43(15) (2017) 11992-11997.
[59] X. Jiao, Y. Shi, H. Zhong, R. Zhang, J. Yang, AlN thin films deposited on different Si-based substrates through RF magnetron sputtering, J. Mater. Sci. Mater. Electron. 26(2) (2014) 801-808.
[60] C. Mirpuri, S. Xu, J.D. Long, K. Ostrikov, Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN, J. Appl. Phys. 101(2) (2007) 024312.
[61] K.-H. Chiu, J.-H. Chen, H.-R. Chen, R.-S. Huang, Deposition and characterization of reactive magnetron sputtered aluminum nitride thin films for film bulk acoustic wave resonator, Thin Solid Films 515(11) (2007) 4819-4825.
[62] K. Suzuki, K. Kijima, Preparation and dielectric properties of polycrystalline films with dense nano-structured BaTiO3 by chemical vapor deposition using inductively coupled plasma, Vacuum 80(6) (2006) 519-529.
[63] A.R.A. Aziz, S.A. Aziz, Application of Box Behnken Design to Optimize the Parameters for Kenaf-Epoxy as Noise Absorber, IOP Conference Series: Mater. Sci. Eng., 454 (2018) 012001.
[64] C.M. Ewulonu, J.L. Chukwuneke, I.C. Nwuzor, C.H. Achebe, Fabrication of cellulose nanofiber/polypyrrole/polyvinylpyrrolidone aerogels with box-Behnken design for optimal electrical conductivity, Carbohydr. Polym. 235 (2020) 116028.
[65] J. Aveyard, J.W. Bradley, K. McKay, F. McBride, D. Donaghy, R. Raval, R.A. D′Sa, Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting, J. Mater. Chem. B, 5 (2017) 2500-2510.
指導教授 傅尹坤(KUN-FU YIN) 審核日期 2021-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明