參考文獻 |
[1] P. Panda, R. Ramaseshan, N. Ravi, G. Mangamma, F. Jose, S. Dash, K. Suzuki, H. Suematsu, Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique, Mater. Chem. Phys. 200 (2017) 78-84.
[2] H. Morkoç, Handbook of Nitride Semiconductors and Devices, in: Materials Properties, Phys. and Growth, Vol. 1, WILEY-VCH, Weinheim, 2008, pp. 23e30.
[3] T.S. Pan, Y. Zhang, J. Huang, B. Zeng, D.H. Hong, S.L. Wang, H.Z. Zeng, M. Gao, W. Huang, Y. Lin, Enhanced thermal conductivity of polycrystalline aluminum nitride thin films by optimizing the interface structure, J. Appl. Phys. 112(4) (2012) 044905.
[4] H. Hirayama, S. Fujikawa, N. Noguchi, J. Norimatsu, T. Takano, K. Tsubaki, N. Kamata, 222-282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire, Phys. Status Solidi (a) 206(6) (2009) 1176-1182.
[5] G. Okada, T. Kato, D. Nakauchi, K. Fukuda, T. Yanagida, Photochromism and Thermally and Optically Stimulated Luminescences of AlN Ceramic Plate for UV Sensing, Sens. Mater. 28 (2016) 897.
[6] N.G. Berg, T. Paskova, A. Ivanisevic, Tuning the biocompatibility of aluminum nitride, Mater. Lett. 189 (2017) 1-4.
[7] A. Taurino, M.A. Signore, M. Catalano, M.J. Kim, (1 0 1) and (0 0 2) oriented AlN thin films deposited by sputtering, Mater. Lett. 200 (2017) 18-20.
[8] F. Martin, P. Muralt, M.-A. Dubois, A. Pezous, Thickness dependence of the properties of highly c-axis textured AlN thin films, J. Vac. Sci. Technol. A 22 (2) (2004)361
[9] H. Cheng, Y. Sun, J.X. Zhang, Y.B. Zhang, S. Yuan, P. Hing, AlN films deposited under various nitrogen concentrations by RF reactive sputtering, J. Cryst. Growth 254(1-2) (2003) 46-54.
[10] S. Venkataraj, D. Severin, R. Drese, F. Koerfer, M. Wuttig, Structural, optical and mechanical properties of aluminium nitride films prepared by reactive DC magnetron sputtering, Thin Solid Films 502(1-2) (2006) 235-239.
[11] A. Mahmood, N. Rakov, M. Xiao, Influence of deposition conditions on optical properties of aluminum nitride (AlN) thin films prepared by DC-reactive magnetron sputtering, Mater. Lett. 57(13-14) (2003) 1925-1933.
[12] C.M. Zetterling, M. Östling, K. Wongchotigul, M.G. Spencer, X. Tang, C.I. Harris, N. Nordell, S.S. Wong, Investigation of aluminum nitride grown by metal–organic chemical-vapor deposition on silicon carbide, J. Appl. Phys. 82(6) (1997) 2990-2995.
[13] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56(3) (2000) 159-172.
[14] J. Sellers, Asymmetric bipolar pulsed DC: the enabling technology for reactive PVD, Surf. Coat. Technol. 98(1-3) (1998) 1245-1250.
[15] R.K. Choudhary, P. Mishra, A. Biswas, A.C. Bidaye, Structural and Optical Properties of Aluminum Nitride Thin Films Deposited by Pulsed DC Magnetron Sputtering, ISRN Mater. Sci. 2013 (2013) 1-5.
[16] S. W. Butler, Control of plasma processes in semiconductor manufacturing, Introduction to the Proc. Workshop Ind. Appl. Plasma Chem., Low Pressure Non-Equilibrium Plasma Appl., Aug. 21–25, 1995
[17] S. W. Butler and T. F. Edgar, Case studies in equipment modeling and control in the microelectronics industry, Introduction to the Chemical Process Control —V, Proc. Fifth Int. Conf. Chem. Process Contr., CACHE, AIChE, J. Kantor, C. Garcia, and B. Carnahan, Eds., Tahoe, CA, 1996, pp. 133–144.
[18] S. Limanond, J. Si, K. Tsakalis, Monitoring and control of semiconductor manufacturing processes, IEEE Control Syst., 18(6) (1998) 46-58.
[19] H.H. Yue, S.J. Qin, R.J. Markle, C. Nauert, M. Gatto, Fault detection of plasma etchers using optical emission spectra, IEEE Trans. Semicond. Manuf. 13(3) (2000) 374-385.
[20] S.-H. Wang, H.-E. Chang, C.-C. Lee, Y.-K. Fuh, T.T. Li, Evolution of a-Si:H to nc-Si:H transition of hydrogenated silicon films deposited by trichlorosilane using principle component analysis of optical emission spectroscopy, Mater. Chem. Phys. 240 (2020) 122186.
[21] H.-J. Huang, L.-H. Kau, H.-S. Wang, Y.-L. Hsieh, C.-C. Lee, Y.-K. Fuh, T.T. Li, Large-scale data analysis of PECVD amorphous silicon interface passivation layer via the optical emission spectra for parameterized PCA, Int. J. Adv. Manuf. Technol. 101(1-4) (2018) 329-337.
[22] J. Acosta, A. Rojo, O. Salas, J. Oseguera, Process monitoring during AlN deposition by reactive magnetron sputtering, Surf Coat Tech, 201 (2007) 7992-7999.
[23] D. Escobar, R. Ospina, A.G. Gómez, E. Restrepo-Parra, Microstructure, residual stress and hardness study of nanocrystalline titanium–zirconium nitride thin films, Ceram. Int. 41(1) (2015) 947-952.
[24] R. Machunze, G.C.A.M. Janssen, Stress gradients in titanium nitride thin films, Surf. Coat. Technol. 203(5-7) (2008) 550-553.
[25] N.G. Ferreira, E. Abramof, N.F. Leite, E.J. Corat, V.J. Trava-Airoldi, Analysis of residual stress in diamond films by x-ray diffraction and micro-Raman spectroscopy, J. Appl. Phys. 91(4) (2002) 2466-2472.
[26] Y. Xi, K. Gao, X. Pang, H. Yang, X. Xiong, H. Li, A.A. Volinsky, Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films, Ceram. Int. 43(15) (2017) 11992-11997.
[27] Z. Ding, G. Sun, M. Guo, X. Jiang, B. Li, S.Y. Liang, Effect of phase transition on micro-grinding-induced residual stress, J. Mater. Process Technol. 281 (2020) 116647.
[28] A. Sanz-Hervás, E. Iborra, M. Clement, J. Sangrador, M. Aguilar, Influence of crystal properties on the absorption IR spectra of polycrystalline AlN thin films, Diam. Relat. Mater. 12(3-7) (2003) 1186-1189.
[29] A. Freddi, D. Veschi, M. Bandini, G. Giovani, Design of Experiments to Investigate Residual Stresses and Fatigue Life Improvement by a Surface Treatment, Fatigue Fract. Eng. Mater. Struct. 20(8) (1997) 1147-1157.
[30] E. Maleki, O. Unal, K. Reza Kashyzadeh, Efficiency Analysis of Shot Peening Parameters on Variations of Hardness, Grain Size and Residual Stress via Taguchi Approach, Met. Mater. Int. 25(6) (2019) 1436-1447.
[31] H. Sang Jeen, G.S. May, P. Dong-Cheol, Neural network modeling of reactive ion etching using optical emission spectroscopy data, IEEE Trans. Semicond. Manuf. 16(4) (2003) 598-608.
[32] X. Jia, C. Jin, M. Buzza, W. Wang, J. Lee, Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves, Renew. Energ. 99 (2016) 1191-1201.
[33] 蕭宏,半導體製程技術導論,三版,全華圖書,新北市,2019
[34] S.H. Lee, K.H. Yoon, D.S. Cheong, J.K. Lee, Relationship between residual stress and structural properties of AlN films deposited by r.f. reactive sputtering, Thin Solid Films 435 (2003) 193–198
[35] A. Padey, S. Dutta, R. Prakash, A. K. Kapoor, D. Kaur, Growth and Comparison of Residual Stress of AlN Films on Silicon (100), (110) and (111) Substrates, J. Electron. Mater. 47 1405–1413 (2018)
[36] A. Belkind, A. Freilich , J. Lopez , Z. Zhao, W. Zhu, K. Becker, Characterization of pulsed dc magnetron sputtering plasmas, New J. Phys. 7 (2005) 90
[37] H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, S. Nakano, Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz‐band surface acoustic wave devices, Appl. Phys. Lett. 64, 166 (1994)
[38] J. Lopez, W. Zhu, A. Freilich, A. Belkind, K. Becker, Time-resolved optical emission spectroscopy of pulsed DC magnetron sputtering plasmas, J. Phys. D: Appl. Phys. 38 (2005) 1769.
[39] Glow Discharge Processes: Sputtering and Plasma Etching
[40] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年
[41] Hutchinson I et al. Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
[42] R. Chodun, K. Nowakowska, K. Zdunek, Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition, Mater. SCI-Poland (2015) 33 894–901.
[43] J. Acosta, A. Rojo, O. Salas, J. Oseguera, Process monitoring during AlN deposition by reactive magnetron sputtering, Surf. Coat. Technol. (2007) 201 7992–7999.
[44] K. Pearson, On lines and planes of closest fit to systems of points in space, Philos Mag (Abingdon) (1901) 2 559–572.
[45] H. Hotelling, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol. (1993) 24, 417–441.
[46] J. Hogenboom and L. Barina, Principal component analysis and sidechannel attacks-master thesis, Master′s thesis, 2010.
[47] Sanginésa R, Abundiz-Cisnerosa N, Utrera H O, Diliegros-Godinesb C and Machorro M R 2018 J. Phys. D 51 9
[48] 葉怡成,實驗計劃法:製程與產品最佳化,一版,五南圖書出版社, 2001
[49] J.P. Kar, G. Bose, S. Tuli, Correlation of electrical and morphological properties of sputtered aluminum nitride films with deposition temperature, Curr. Appl. Phys. 6(5) (2006) 873-876.
[50] X. Jia, C. Jin, M. Buzza, W. Wang, J. Lee, Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves, Renew. Energ. 99 (2016) 1191-1201.
[51] U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, E. J. Mittemeijer, Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction, J. Appl. Crystallogr. (2005) 38 1-29.
[52] B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, 3rd Edition, Prentice Hall, 2001.
[53] M. Birkholz, Thin Film Analysis by X-Ray Scattering, Wiley, 2006.
[54] A. Pandeyab, S. Duttaa, R. Prakashb, S. Dalala, R. Ramana, A. K. Kapoora, D. Kaurb, Growth and evolution of residual stress of AlN films on silicon (100) wafer, Mater. Sci. Semicond. Process. (2016) 52 16-23
[55] I.A. Alhomoudi, G. Newaz, Residual stresses and Raman shift relation in anatase TiO2 thin film, Thin Solid Films (2009) 517 4372–4378
[56] A. Iqbal, M.Y. Faisal, Reactive Sputtering of Aluminum Nitride (002) Thin Films for Piezoelectric Applications: A Review, Sensors (2018) Jun; 18(6): 1797.
[57] C. T. Chang, Y. C. Yang, J. W. Lee, B. S. Lou, The influence of deposition parameters on the structure and properties of aluminum nitride coatings deposited by high power impulse magnetron sputtering, Thin Solid Films (2014) 572 161-168
[58] Y. Xi, K. Gao, X. Pang, H. Yang, X. Xiong, H. Li, A.A. Volinsky, Film thickness effect on texture and residual stress sign transition in sputtered TiN thin films, Ceram. Int. 43(15) (2017) 11992-11997.
[59] X. Jiao, Y. Shi, H. Zhong, R. Zhang, J. Yang, AlN thin films deposited on different Si-based substrates through RF magnetron sputtering, J. Mater. Sci. Mater. Electron. 26(2) (2014) 801-808.
[60] C. Mirpuri, S. Xu, J.D. Long, K. Ostrikov, Low-temperature plasma-assisted growth of optically transparent, highly oriented nanocrystalline AlN, J. Appl. Phys. 101(2) (2007) 024312.
[61] K.-H. Chiu, J.-H. Chen, H.-R. Chen, R.-S. Huang, Deposition and characterization of reactive magnetron sputtered aluminum nitride thin films for film bulk acoustic wave resonator, Thin Solid Films 515(11) (2007) 4819-4825.
[62] K. Suzuki, K. Kijima, Preparation and dielectric properties of polycrystalline films with dense nano-structured BaTiO3 by chemical vapor deposition using inductively coupled plasma, Vacuum 80(6) (2006) 519-529.
[63] A.R.A. Aziz, S.A. Aziz, Application of Box Behnken Design to Optimize the Parameters for Kenaf-Epoxy as Noise Absorber, IOP Conference Series: Mater. Sci. Eng., 454 (2018) 012001.
[64] C.M. Ewulonu, J.L. Chukwuneke, I.C. Nwuzor, C.H. Achebe, Fabrication of cellulose nanofiber/polypyrrole/polyvinylpyrrolidone aerogels with box-Behnken design for optimal electrical conductivity, Carbohydr. Polym. 235 (2020) 116028.
[65] J. Aveyard, J.W. Bradley, K. McKay, F. McBride, D. Donaghy, R. Raval, R.A. D′Sa, Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting, J. Mater. Chem. B, 5 (2017) 2500-2510. |