博碩士論文 108323106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.144.96.66
姓名 許赫驖(Ho-Tieh Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同鍛造製程對AA7075機械性質與抗腐蝕能力的影響
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討不同鍛造製程對7075鋁合金(AA7075)機械性質與抗腐蝕能力的影響。實驗中對退火後AA7075的擠製棒材使用不同的鍛造條件(鍛造壓縮率及鍛造溫度),之後進行固溶、焠火以及時效處理(T73),再將試棒按照ASTM-E8規範進行CNC加工,隨後進行拉伸試驗量測,進而分析不同鍛造溫度及變形量的條件下,材料微結構對機械性質的影響。
將拉伸試驗後的試棒縱剖後研磨、拋光並透過光學顯微鏡(OM)觀察試棒的微結構;後續利用影像分析軟體分析二次相顆粒的大小、數量及析出位置,探討二次相顆粒對於機械性質的影響。利用雙束聚焦離子顯微鏡(FIB)製備穿透式電子顯微鏡(TEM)試片,藉由能量色散X-射線光譜(EDX)分析析出物的成份,以及利用掃描式電子顯微鏡(SEM)的電子背向散射繞射分析儀(EBSD),分析高低晶界角度比例。
實驗結果分析顯示,AA7075在不同鍛造溫度及變形量的條件下皆符合規範要求(UTS≥505 (Mpa)、YS≥435 (MPa)、TEL≥13%)。AA7075鍛件上高角度晶界長度增加會加速鍛件的腐蝕速率提高Icorr值。
摘要(英) The effects of different forging processes on mechanical properties and corrosion resistance of AA7075 were investigated in this study. The annealed AA7075 extruded bars which were produced by different forging processes (forging temperature and reduction rate) processed the solution treatment, water quenched and T73 artificial aging treatment. The samples were machined to the tensile bars according to ASTM-E8 specification, and then the tensile bars were tested to get tensile properties to analyze the effects of different forging temperatures and reduction rates on mechanical properties and microstructures.
Finally, polished longitudinal sections of different samples were observed by the optic microscope (OM), scanning electron microscope (SEM), transmission micro-scope (TEM) to analyze of second phase particle particles, dispersoids and grain boundary angles.
Experimental results demonstrate that all AA7075 samples after different forging processes compliance with specification (UTS≥505 (Mpa)、YS≥435 (MPa)、TEL≥13%). Increasing the high misorientation angle grain boundary lengths (MAGBs) per unite area accelerated corrosion to lift up Icorr values.
關鍵字(中) ★ Al-Zn-Mg-Cu合金
★ 鍛造
★ 晶界角度
★ 機械性質
★ 抗腐蝕能力
關鍵字(英) ★ Al-Zn-Mg-Cu Alloy
★ forging
★ angle grain boundary
★ mechanical properties
★ corrosion resistance
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
第二章 文獻回顧 2
2-1 Al-Zn-Mg-(Cu) 鋁合金介紹 2
2-2 Al-Zn-Mg-(Cu) 鋁合金析出物介紹 2
2-3 添加元素對鋁合金影響 6
2-3-1 Mg、Zn 6
2-3-2 Cu 6
2-3-3 稀有元素影響:鈦(Ti)、鋯(Zr) 6
2-4 添加元素在不同溫度下的擴散速率(在FCC鋁中) 8
2-5 熱處理介紹 9
2-6 回復(Recovery)、再結晶(Recrystallization)介紹[24] 11
2-6-1 回復(Recovery) 11
2-6-2 動態回復(Dynamic recovery) 11
2-6-3 再結晶(Recrystallization) 11
2-6-4 靜態再結晶(Static recrystallization, SRX) 12
2-6-5 動態再結晶(Dynamic recrystallization, DRX) 12
2-7 腐蝕 18
2-7-1 腐蝕方式 18
2-7-2 析出物對腐蝕的影響 20
2-8 無析出帶precipitate-free zones(PFZ) 21
第三章 實驗方法與步驟 23
3-1 實驗材料 23
3-2 實驗用設備與儀器介紹 23
3-3 試棒尺寸與鍛造模具 26
第四章 結果與討論 33
4-1 不同鍛造溫度與變形量對AA7075鍛件品質的影響 33
4-1-1 不同鍛造溫度與變形量對AA7075鍛件機械性質(UTS、YS、TEL、韌性) 33
4-1-2 不同鍛造溫度及變形量對AA7075鍛件二次相顆粒尺寸數量的影響 35
4-1-3 不同鍛造溫度與變形量對AA7075鍛件晶粒尺寸的影響 37
4-1-4 不同鍛造溫度與變形量對AA7075鍛件晶界角度的影響 39
4-1-5 不同鍛造溫度與變形量對AA7075鍛件析出物分析 48
4-1-6 不同鍛造溫度與變形量對AA7075鍛件抗腐蝕能力影響 50
第五章 綜論 55
5-1 不同鍛造溫度與變形量對AA7075鍛件機械性質影響 55
5-2 不同鍛造溫度與變形量對AA7075鍛件微結構影響 55
5-3 不同鍛造溫度與變形量對AA7075鍛件晶界高低角度變化 55
5-4 不同鍛造溫度與變形量對AA7075鍛件晶粒及晶界影響 56
5-5 不同鍛造溫度與變形量對AA7075鍛件抗腐蝕能力影響 56
第六章 結論 57
參考文獻 58
附錄 一 64
附錄 二 65
附錄 三 69
附錄 四 70
參考文獻 [1] T. S. Shih, T. W. L, and W.N. Hsu, “Effects of Cryogenic Forging and Anodization on the Mechanical Properties of AA 7075-T73 Aluminum Alloys”, JMEPEG, Vol. 25, pp. 1211-1218, February 2016.
[2] X. Fang, Y. Du, M. Song, K. Li, and C. Jiang “Effects of Cu content on the precipitation process of Al–Zn–Mg alloys”, Journal of Materials Science, Vol 47, pp. 8174-8187, July 2012.
[3] A. Ghosh, M. Ghosh, and G. Shankar, “On the role of precipitates in controlling microstructure and mechanical properties of Ag and Sn added 7075 alloys during artificial ageing”, Materials science & engineering A, Vol. 738, pp. 399-411, September 2018.
[4] L. Oger, R. Andrieu, G. Ofemer, L. Peguet, and C. Blanc, “Hydrogen - Dislocation interactions in a low-copper 7xxx aluminium alloy: About the analysis of interrupted stress corrosion cracking tests”, Materials Science & Engineering A, Vol 790, pp. 139-654, March 2020
[5] A.C. Umamaheshwer Rao, V. Vasu, M. Govindaraju, and K.V. Sai Srinadh, “Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review”, Transactions of Nonferrous Metals Society of China, Vol 26, pp. 1447-1471, March 2016.
[6] M.O. Speidel and M.V. Hyatt, “Stress-Corrosion Cracking of High-Strength Aluminum Alloys”, Advances in corrosion science and technolohy, Vol 2, Plenum Press, New York, 1972.
[7] J. J. Thomsom, E. S. Tankins, and V. S. Agarwala, “A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7XXX Aluminum alloy”, Materials Performance, vol.26, pp.45-52, 1987.
[8] L. KBerg, J. G. Jønnes, V. Hansen, X. Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L. R. Wallenberg, “GP-zones in Al–Zn–Mg alloys and their role in artificial aging”, Acta Materialia Vol. 49, Issue 17, pp. 3443-3451, October 2001,
[9] L.F. Mondolfo, “Structure of the aluminum: magnesium: zinc alloys”, Metallurgical Reviews, Vol 16, pp. 95-124, 1971.
[10] K. Asano and K. I. Hirano, “Precipitation process in an Al-Zn-Mg alloy”, Transactions of the Japan Institute of Metals, Vol 9, pp. 24-34, July 1968.
[11] J.T. Liu, Y.A. Zhang, X.W. Li, Z.H. Li, B.Q. Xiong, and J.S. Zhang, “Thermodynamic calculation of high zinc-containing Al-Zn-Mg-Cu alloy”. Trans. Nonferrous. Met. Soc. China, Vol 24, pp. 1481-1487, May 2014.
[12] L. Hua, X. Hu, and X. Han, “Microstructure evolution of annealed 7075 aluminum alloy and its influence on room-temperature plasticity”, Materials Design, Vol 196, pp. 109-192, November 2020.
[13] M. J. Style, T. J. Bastow, M. A. Gibson, and C. R. Hutchinson, “Substitution of Cu and/or Al in η phase (MgZn2) and the implications for precipitation in Al–Zn–Mg–(Cu) alloys”, Intermetallics, Vol 49, pp. 40-51, June 2014.
[14] J. Zhang, Y. N. Huang, C. Mao, and P. Peng, “Structural, elastic and electronic properties of y (Al2Cu) andS(Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations”, Solid State Communications, Vol 152, pp. 2100-2104, December 2012.
[15] M. Cabibbo, “Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys”, Materials Science and Engineering: A, Vol. 560, pp. 413-432, October 2012.
[16] R. S. Rana, Rajesh Purohit, and S Das, “Reviews on the Influences of Alloying elements on the Microstructure and Mechanical Properties of Aluminum Alloys and Aluminum Alloy Composites”, International Journal of Scientific and Research Publications, Vol. 2, Issue 6, June 2012.
[17] M.C. Carroll and P.I. Gouma, “Effects of Zn additions on the grain boundary precipitation and corrosion of Al5083”, Scripta mater., Vol. 42, pp. 335-340, January 2000.
[18] A. Deschamps, Y. Bre´ chet, and F. Livet, “Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy”, Materials Science and Technology, Vol. 15, pp. 993-1000, July 2013.
[19] B. Sarkar, M. Marek, and E. A. Starke, “The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-XCu alloys”, Metallurgical Transactions A, Vol. 12, pp. 1939-1943, November 1981.
[20] M. Ji, W. Li, H. Liu, L. Zhu, H. Chen, and W. Li, “Effect of titanium sol on sulfuric-citric acids anodizing of 7150 aluminum alloy”, Surfaces and Interfaces, Vol. 19, June 2020.
[21] M. Jaradeh and T. Carlberg, “Effect of titanium additions on the microstructure of DC-cast aluminium alloys”, Materials Science and Engineering A, Vol. 413-414, pp. 277-282, December 2005.
[22] V. M. S. Muthaiah and S. Mula, “Effect of zirconium on thermal stability of nanocrystalline aluminium alloy prepared by mechanical alloying”, Journal of Alloys and Compounds, Vol. 688, pp. 571-580, December 2016.
[23] Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F. Y. Xie, “Diffusion coefficients of some solutes in FCC and liquid Al: critical evaluation and correlation”, Materials Science and Engineering A, Vol. 363, pp. 140-151, December 2003.
[24] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miuraa, and J. J. Jonasc, “Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions”, Progress in Materials Science, Vol 60, pp. 130-207, October 2014
[25] Y. C. Lin, L. T. Li, Y. C. Xia, and Y. Q. Jiang, “Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy, Journal of Alloys and Compounds”, Journal of Alloy and Compounds, Vol. 550, pp. 438-445, February 2013.
[26] M. Rajamuthamilselvan and S. Ramanathan, “Hot deformation behaviour of 7075 alloy”, Journal of Alloys and Compounds, Vol.509, pp. 948-952, January 2011.
[27] Z. C. Sun, L. S. Zheng, and H. Yang, “Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation, Materials Characterization”, Material Characterization, Vol. 90, pp. 71-80, April 2014.
[28] R. K. Gupta, V. A. Kumar, A. S. Krishnan, and J. Niteshraj, “Hot Deformation Behavior of Aluminum Alloys AA7010 and AA7075, Journal of Materials Engineering and Performance”, Journal of Materials Engineering and Performance, Vol. 28, pp. 5021-5036, July 2019
[29] Y. Yang, D. H. Li, H. G. Zheng, X. M. Li, and F. Jiang, “Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy”, Materials Science and Engineering: A, Vol 527, pp. 344-354, December 2009.
[30] M. O. Speidel, “Stress corrosion cracking of aluminum alloys”, Metallurgical Transactions A, Vol. 6, pp. 631, April 1975.
[31] J. Albrecht, A. Thompson, and I. M. Bernstein, “The role of microstructure in hydrogen-assisted fracture of 7075 aluminum”, Metallurgical Transactions A, Vol. 10, pp. 1759-1766, November 1979.
[32] T. D. Burleigh, “The postulated mechanisms for stress corrosion cracking of aluminum alloys: A review of the literature 1980−1989”, Corrosion, Vol. 47, pp. 89-98, Bebruary 1991.
[33] M. Bobby-Kannan, V. S. Raja, R. Raman, and A. K.Mukhopadhyay A, “Influence of multistep aging on the stress corrosion cracking behavior of aluminum alloy 7010”, Corrosion, Vol. 59, pp. 881-889, October 2003.
[34] F. Viana, A. M. P. Pinto, H. M. C. Santos, and A. B. Lopes, “Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization”, Journal of Materials Processing Technology, Vol. 92, pp. 54-59, August 1999.
[35] F. Zhang, C. Ornek, J. Nilsson, and J. Pan, “Anodisation of Aluminium Alloy AA7075-Influence of Intermetallic Particles on Anodic Oxide Growth”, Corrosion Science, Vol 164, pp. 108-319, March 2020.
[36] M. Fourmeau, C. D. Marioara, T. Børvik, A. Benallal, and O. S. Hopperstad, “A study of the influence of precipitate-free zones”, Philosophical Magazine, vol. 95, pp. 3278-3304, May 2015.
[37] H. P. Lin, D. Chen, and J. C. Kuo, “Grain Boundary Evolution of Cold-Rolled FePd Alloy during Recrystallization at Disordering Temperature”, materials, vol. 8, pp. 3254-3267, June 2015.
[38] T. Mo, Z. Chen, H. Huang, J. Lin, and Q. Liu, “Effect of two-step annealing on recrystallized structure and mechanical properties in AA7075/AA1100 laminated metal composites processed by accumulative roll bonding”, Materials Characterization, Vol. 158, December 2019.
[39] S. H. de Souzaa, A. F. Padilhab, and A. M. Kliaugac, “Softening Behavior During Annealing of Overaged and Cold-rolled Aluminum Alloy 7075”, Vol. 22, April 2019.
[40] L. H. Liu, J. H. Chen, T. W. Fan, Z. R. Liu, Y. Zhang, and D. W. Yuan, “The possibilities to lower the stacking fault energies of aluminum materials investigated by first-principles energy calculations”, Computational Materials Science, Vol. 108, pp. 136-146, October 2015.
[41] M.J. Styles, T.J. Bastow, M.A. Gibson, C.R. Hutchinson, “Substitution of Cu and/or Al in η phase (MgZn2) and the implications for precipitation in Al-Zn-Mg-(Cu) alloys”, Intermetallics, Vol. 49, pp. 40-51, January 2014.
[42] Y. Han, L. Li, Z. Z. Deng, Y. K. Le, and X. M. Zhang, “Constituent Optimization of Al-Zn-Mg-Cu Alloy Based on Thermodynamic Calculation Method”, The Chinese Journal of Nonferrous Metals. Vol. 21, January 2011.
[43] F. Li, S. Chen, K. Chen, L. Huang, L. He, and G. Chen, “Influence of deformation process on microstructure and properties of 2014 aluminium alloy”, Materials Science and Technology, Vol. 36, pp. 1465-1475, July 2020.
[44] 吳家森,陽極皮膜生長行為與變形對鋁合金陽極皮膜的抗腐蝕能力與光學性質的影響,中央大學碩士論文,2018。
[45] K. Rajan, W. Wallace, and J. C. Beddoes, “Microstructural study of a high-strength stress-corrosion resistant 7075 aluminium alloy”, Journal of Materials Science, Vol. 17, pp. 2817-2824, October 1982.
[46] T. F. Chung, M. Kawasaki, Phillip, K. Nishio, M. Shiojiri, W. C. Li, C.-N. Hsiao, and J. R. Yang, “Atomic-resolution energy dispersive X-ray spectroscopy mapping of η precipitates in an Al-mg-Zn-cu alloy”, Materials Characterization, Vol. 166, pp. 110448, August 2020.
指導教授 施登士(Teng-Shih Shih) 審核日期 2021-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明