參考文獻 |
[1] Ozturk, F., Sisman, A., Toros, S., Kilic, S., & Picu, R. C. Influence of aging treatment on mechanical properties of 6061 aluminum alloy., Materials and Design 31 2010;972–975.
[2] ASM Handbook , Property and selection:Nonferrous Alloys and Pure Metals, ASM,Vol.2 9th pp.1-236, 1979.
[3] 許源泉,鍛造學理論與實習,三民書局,1990
[4] 金屬工業發展中心,鍛造技術,經濟部國際貿易局,1981
[5] 周俊宏,金屬二次加工Technology roadmap專題研究-沖壓、鍛造,經濟部,2002
[6] Gronostajski, Z., Kaszuba, M., Hawryluk, M., Zwierzchowski, M., A review of the degradation mechanisms of the hot forging tools. Archives of Civil and Mechanical Engineering 2014;528-539.
[7] Shen, L., Zhou, J., Xiong, Y.-B., Zhang, J.-S., & Meng, Y., Analysis of service condition of large hot forging die and refabrication of die by bimetal-layer weld surfacing technology with a cobalt-based superalloy and a ferrous alloy., Journal of Manufacturing Processes, 2018; 731–743.
[8] Hawryluk, M., Ziemba, J., Lubrication in hot die forging processes. Proc Inst Mech Eng Part J J Eng Tribol 2019;233/5: 663–675.
[9] Barrau, O., Boher, C., Vergne, C., Rezai-Aria, F. Investigation of friction and wear mechanism of hot forging tool steels. 6th int tooling conference (Karlstadt) 2002.
[10] Baumel, A., Seeger, T. Material data for cyclic loading. Supplement 1. Materials science monographs vol 61 Elsevier Science Publishers Amsterdam 1990.
[11] Gronostajski, Z., Kaszuba, M., Hawryluk, M., Marciniak, M., Zwierzchowski, M., Mazurkiewicz, A, et al. Improving durability of hot forging tools by applying hybrid layers. Metalurgija 2015;54(4):687–90.
[12] Gronostajski, Z., Kaszuba, M., Hawryluk, M, Zwierzchowski, M. A review of the degradation mechanisms of the hot forging tools. Arch Civil Mech Eng 2014;14(4):528–39.
[13] Smolik, J. A. Hybrid surface treatment technology for increase of hot forging dies. Arch Metall Mater 2012;57(3):657–64.
[14] Altan, T. Cold and Hot Forging Fundamentals and Application. ASM International. Ohio State University 2005.
[15] Mazurkiewicz, A., Dobrodziej, J. Model of intelligent database in processing of information concering data of constitution of surface layers. 4th CONTECSI - International Conference on Information Systems and Technology Management 2007.
[16] Dinesh Babu, P., Prasannakumar, B., Marimuthu, P., Mishra, R. K., & Ram Prabhu, T. Microstructure, wear and mechanical properties of plasma sprayed TiO2 coating on Al–SiC metal matrix composite. Arch Civil Mech Eng 2019;19(3):756–67.
[17] Mazurkiewicz, A., & Smolik, J. The innovative directions in development and implementations of hybrid technologies in surface engineering. Arch Metall Mater 2015;60(3):2161–72.
[18] Gronostajski Z, Hawryluk M, Kaszuba M, Marciniak M, Niechajowicz A, Polak S, et al. The expert system supporting the assessment of the durability of forging tools. Int J Adv Manuf Technol 2016; 82:1973–91.
[19] Hawryluk, M., 2016, Methods of analysis and increasing durability of forging tools used in hot die forging processes, monographic publishing series. Problems of operation and machine construction, ISBN 978-83-7789-410-1, Ed.Scientific, ITE – PIB, Radom.
[20] Taylan, A., Gracious, N., Gangshu, S., 2005, ASM metals handbook, vol. 14. p.337–338.
[21] Hawryluk, M., Kaszuba, M., Gronostajski, Z., Polak, S., & Ziemba, J., Identification of the relations between the process conditions and the forging tool wear by combined experimental and numerical investigations. CIRP Journal of Manufacturing Science and Technology. 2020; 87-93.
[22] Gronostajski Z, Marcin K, Sławomir P, Maciej Z, Adam N, Marek H. The failure mechanisms of hot forging dies. Mater Sci Eng A 2016; 657:147–160.
[23] Behrens, BA. Finite element analysis of die wear in hot forging processes. CIRP Ann – Manuf Technol 2008; 57:305–308.
[24] Archard, J. F. Contact and rubbing of flat surfaces. J. Appl. Physics 1953, 24, 981–988.
[25] Bayer, R. G. Mechanical wear fundamentals and testing. Marcel Dekker Inc 2004.
[26] Ghorbani, S., Kopilov, V.V., Polushin, N.I., Rogov, V.A. Experimental and analytical research on relationship between tool life and vibration in cutting process. Arch Civil Mech Eng 2018; 18/3: 844–862.
[27] Thiyagu, M., Karunamoorthy, L., Arunkumar, N. Thermal and tool wear characterization of graphene oxide coated through magnetorheological fluids on cemented carbide tool inserts. Arch Civil Mech Eng 2019; 19/4:1043–1055.
[28] Abachi, S., Akkok, M., Gokler, M. l. Wear analysis of hot forging dies. Tribol Int 2010; 43:467–473.
[29] Ghaei, A., Movahhedy, M. R. Die design for the radial forging process using 3D FEM. J of Mater Process Technol 2007; 182:534–539.
[30] Liu, Y., Wu, Y., Wang, J., Liu, S. Defect analysis and design optimization on the hot forging of automotive balance shaft based on 3D and 2D simulations. Int J Adv Manuf Technol 2018; 94:2739–2749.
[31] Langner, J., Stonis, M., Behrens, B. A. Investigation of a moveable flash gap in hot forging. J of Mater Process Technol 2016; 231:199–208.
[32] Eyercioglu, O., Kutuk, M. A., Yilmaz, N. F. Shrink fit design for precision gear forging dies. J of Mater Process Technol 2009; 209:2186–2194.
[33] He, H., Huang, S., Yi, Y., Guo, W. Simulation and experimental esearch on isothermal forging with semi-closed die and multistage- hange speed of large AZ80 magnesium alloy support beam. J of Mater Process Technol 2017; 246:198–204.
[34] Wan, K. T., Ho, K. L, Soo, K. B. Multi-stage cold forging and experimental investigation for the outer race of constant velocity joints. Mater Des 2013; 49:368–385.
[35] Kroiß, T., Engel, U., Merklein, M. Comprehensive approach for process modeling and optimization in cold forging considering interactions between process, tool and press. J Mater Process Technol 2013; 213:1118–1127.
[36] Mori, K., Nakano, T., 2016. State-of-the-art of plate forging in Japan. Prod. Eng. 10 (1),81–91.
[37] QForm, finite element simulation software data base.
[38] 葉怡成,實驗計畫法-製程與產品最佳化,五南出版社,2001
[39] Ahn, S., Montero, M., Odell, D., Roundy, S., Wright, P. K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 2002;8:248–57.
[40] Chin, K. A., Leong, K. F., Chua, C. K., Chandrasekaran, M. Investigation of the mechanical properties and porosity relationships in fused deposition modelling‐ fabricated porous structures. Rapid Prototyp J 2006; 12:100–5.
[41] Onwubolu, G. C., Rayegani, F. Characterization and optimization of mechanical properties of ABS parts manufactured by the fused deposition modelling process. Int J Manuf Eng 2014; 2014:13.
[42] Anitha, R., Arunachalam, S, Radhakrishnan, P. Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol 2001; 118:385–8.
[43] Chohan, J. S., Singh, R. Enhancing dimensional accuracy of FDM based biomedical implant replicas by statistically controlled vapor smoothing process. Prog Addit Manuf 2016; 1:105–13.
[44] Wang, C. C., Lin, T., Hu, S. Optimizing the rapid prototyping process by integrating the Taguchi method with the Gray relational analysis. Rapid Prototyp J 2013.
[45] Lee, B. H., Abdullah, J., Khan, Z. A. Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 2005; 169:54–61.
[46] Nancharaiah, T. Optimization of process parameters in FDM process using design of experiments. Int J Emerg Technol 2011; 2:100–2.
[47] Sahu, R. K, Mahapatra, S. S., Sood, A. K. A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic. J Manuf Sci & Prod 2013;13(183).
[48] Huynh, H.N., Nguyen, A.T., Ha, N. L., Thu, T., Thai, H. Application of fuzzy taguchi method to improve the dimensional accuracy of fused deposition modeling processed product. Int Conf Syst Sci Eng 2017:107–12.
[49] Verran, G. O, Mendes, R. P. K, Valentina, D. L. V. O. DOE applied to optimization of aluminum alloy die castings. J of Mater Process Technol 2008; 200:120–125.
[50] Syrcos, G. P. Die casting process optimization using Taguchi methods. J of Mater Process Technol 2003; 135:68–74.
[51] Qi, Z., Wang, X., Chen, W. A new forming method of straight bevel gear using a specific die with a flash. Int J Adv Manuf Technol 2019; 100:3167–3183.
[52] Chen, W. C., Nguyen, M. H, Chiu, W. H., Chen, T. N, Tai P. H. Optimization of the plastic injection molding process using the Taguchi method, RSM, and hybrid GA-PSO. Int J Adv Manuf Technol 2016; 83:1873–1886.
[53] Lin, B. T, Kuo, C. C. Application of the fuzzy-based Taguchi method for the structural design of drawing dies. Int J Adv Manuf Technol 2011; 55:83–93
[54] Liu, J., Cui, Z. Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear. J of Mater Process Technol 2009; 209:5871–5880.
[55] NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/
[56] Deng, J. Introduction to grey system theory. J. Grey Syst. 1989;1:1–24.
[57] Rajeswari, B., Amirthagadeswaran KS. Experimental investigation of machinability characteristics and multi-response optimization of end milling in aluminium composites using RSM based grey relational analysis. Measurement 2017;105:78–86.
[58] Unnikrishna Pillai, J., Sanghrajka, I., Shunmugavel, M., Muthuramalingam, T., Goldberg, M., Littlefair, G. Optimisation of multiple response characteristics on end milling of aluminium alloy using Taguchi-Grey relational approach. Measurement 2018;124:291–8.
[59] Amlana Panda, Ashok Kumar Sahoo, Arun Kumar Rout. Multi-attribute decision making parametric optimization and modeling in hard turning using ceramic insert through grey relational analysis: A case study. Decision Science Letters 5 2016;581–592
[60] Vadde, K. K., Syrotiuk, V. R., & Montgomery, D. C. Optimizing protocol interaction using response surface methodology. IEEE Transactions on Mobile Computing, 2006;5(6), 627–639.
[61] Minitab, Statistical software data base. |