博碩士論文 108323002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.17.183.204
姓名 戴琬甯(Wan-Ning Dai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 CsPb(BrxI1-x)3@SiO2量子點薄膜之合成及其性質探討
(Synthesis and Properties of CsPb(BrxI1-x)3 @ SiO2 Quantum dot Film)
相關論文
★ 以CaTiO3應用於鈣鈦礦太陽能電池電子傳輸層之研究★ 奈微米結構於鈣鈦礦太陽能電池光捕捉應用之研究
★ 氟摻雜氧化錫奈米週期結構電極應用於鈣/鈦複合物作為鈣鈦礦太陽能電池介孔層之研究★ 具奈米結構之氟摻雜氧化錫玻璃基板應用於鈣鈦礦太陽能電池之研究
★ 利用光發射光譜儀監控高功率脈衝磁控濺鍍光學薄膜之研究★ 利用溶劑萃取法結合綠色溶劑製備鈣鈦礦太陽能電池
★ ITO奈米週期結構提升鈣鈦礦發光二極體光萃取率之模擬研究★ 水溶液法製備CsxPbyBrz鈣鈦礦系材料之研究
★ 單源熱蒸鍍全無機鈣鈦礦薄膜與發光二極體之研究★ APTES製備CsPbBr3@SiO2量子點擴散粒子暨擴散膜之研究
★ 二氧化矽包覆鈣鈦礦量子點薄膜 暨擴散粒子之研究★ 高壓輔助熱退火製程改善全無機鈣鈦礦太陽能電池之研究
★ 雙源順序熱蒸鍍全無機混合鹵化物鈣鈦礦藍色發光二極體之研究★ 以高壓輔助熱退火製備高開關比之自供電全無機鈣鈦礦光電感測器
★ 不同熱處理製程對於全無機混合鹵化物鈣鈦礦 藍色發光二極體之研究★ 利用TPBi增益綠光鈣鈦礦電致發光元件效率之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦系列的材料由於其優異的光電性能,包括高光致發光量子產率、窄發光半高寬和可調整發光波長,可應用於太陽能電池、雷射、光伏元件以及發光二極體等領域,成為近年來學術界及產業界一大研究熱點。儘管如此,紅色發光的全無機鈣鈦礦CsPb(BrxI1-x)3 材料由於對濕氣、空氣敏感的缺點,故極大地限制其未來應用,因此改善材料的穩定性是目前研究的重點之一。
本研究採用無需使用極性溶劑的熱注法製程,並搭配不同配體油胺及3-氨基丙基三乙氧基矽烷,藉由調整鹵素比例,合成出不同發光波長的溴碘混合型鈣鈦礦CsPb(BrxI1-x)3量子點。此外,為了增加量子點的應用價值,本研究選擇最接近學術界在633nm處紅色發光之研究的鹵素比例,加入易加工的聚甲基丙烯酸甲酯基質中製備成紅光量子點光致發光薄膜,並分別對其進行發光性質、耐候性與特性分析及比較,研究結果顯示3-氨基丙基三乙氧基矽烷有助於增強量子點薄膜穩定性。然而,量子點薄膜暴露在空氣和濕氣中的穩定性仍需改善。
因此,本研究進一步再於3-氨基丙基三乙氧基矽烷為配體的量子點中引入四乙氧基矽烷進行溶膠-凝膠反應,在量子點外圍包覆更緻密的二氧化矽以隔絕空氣與濕氣,有效提升薄膜的穩定度。最後,為增強薄膜發光的均勻性,研究摻入二氧化矽奈米球以增加薄膜的米氏散射效率,結果顯示薄膜的光致發光量子產率隨著二氧化矽奈米球摻入量增加而提升,最終成功地製備出光致發光量子產率高達45%且能維持一個月發光的紅光量子點薄膜,未來可望應用於白光發光二極體和顯示器背光模組等領域。
摘要(英) Perovskite materials due to their excellent photoelectric properties, including high PLQY, narrow FWHM and adjustable luminescence wavelength, can be applied to solar cells, lasers, photovoltaic devices, and LEDs, etc., have become a major research hotspot in academia and industry in recent years. Nevertheless, the red-emitting all-inorganic perovskite CsPb(BrxI1-x)3 is sensitive to moisture and air, which greatly limits its commercial application. Therefore, improving the stability of the material is one of the focuses of current research.
In this study, bromine iodine mixed perovskite CsPb(BrxI1-x)3 quantum dots (QDs) with different luminescent wavelengths were synthesized by hot injection method without polar solvent, with different ligands OLA and APTES ((3-Aminopropyl) triethoxysilane) and adjusting the ratio of halogen. In addition, in order to increase the application value of QDs, the ratio of halogen which is closest to the academic research of red luminescence at 633 nm was selected and added into PMMA matrix to prepare films. The luminescent properties and stability of the films were analyzed and compared. The results show that APTES is helpful to enhance the stability of films. However, the stability of the film exposed to air and moisture still needs to be improved.
Therefore, in this study, TEOS (Tetraethyl orthosilicate) sol-gel reaction was introduced into APTES based QDs to coat the QDs with denser SiO2 to isolate air and moisture, thus effectively improving the stability of the films. Finally, in order to enhance the uniformity of light emission, we doped SiO2 nanospheres to increase the Mie scattering. The results show that the PLQY of the films increases with the increase of the doping amount. The red light films with PLQY up to 45% and lasting for one month, which are expected to be used in WLED and display backlights in the future.
關鍵字(中) ★ 鈣鈦礦量子點
★ 二氧化矽包覆
★ 3-氨基丙基三乙氧基矽烷
★ 二氧化矽奈米球
★ 量子點薄膜
關鍵字(英) ★ Perovskite quantum dots
★ Silica coating
★ APTES
★ Silica nano sphere
★ Quantum dots thin film
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 鈣鈦礦材料的結構 2
1-3 鈣鈦礦的分類 3
1-4-1 有機-無機鈣鈦礦(Organic-Inorganic Hybrid Perovskite) 3
1-4-2 全無機鈣鈦礦(All-Inorganic Perovskite) 4
1-4 鈣鈦礦材料之發展與應用 5
1-4-1 鈣鈦礦量子點(Perovskite Quantum Dots, PQDs) 5
1-4-2 鈣鈦礦發光二極體(Perovskite Light-emitting diodes, PeLED) 10
1-4-3 鈣鈦礦太陽能電池 (Perovskite Solar Cells, PSCs) 13
1-5 無機金屬鹵化物鈣鈦礦奈米材料的合成方法 15
1-5-1 高溫熱注法 (Hot-Injection method, HI法) 16
1-5-2 室溫配體輔助再沉澱法(Ligand-Assisted Reprecipitation; LARP) 19
1-6 無機金屬鹵化物鈣鈦礦薄膜的製備方法 21
1-6-1 旋轉塗佈法(Spin coating) 22
1-6-2 真空熱蒸鍍法(Vacuum-based thermal evaporation) 24
1-6-3 刮塗法(Blade coating) 26
1-7 鈣鈦礦常見合成方法之比較 28
1-8 研究動機 29
第二章 實驗部分 30
2-1 實驗材料與儀器 30
2-2-1 實驗材料 30
2-2-2 實驗儀器 30
2-2 實驗步驟 31
2-2-1 製備油酸銫(Cs-Oleate)前驅液: 31
2-2-2 合成CsPb(BrxI1-x)3 奈米晶體(NCs) 31
2-2-3 合成CsPb(BrxI1-x)3 @ SiO2 32
2-2-4 製備CsPb(BrxI1-x)3 @ SiO2薄膜: 32
2-3 實驗量測儀器 33
2-4 儀器分析原理 34
2-4-1 光譜儀(Spectrometer)、積分球(Integrating Sphere) 34
2-4-2 紫外線/可見光分光光譜儀(UV-vis Spectroscopy) 34
2-4-3 X-射線繞射儀(X-ray Diffractometer;XRD) 34
2-4-4 掃描式電子顯微鏡 35
(Scanning Electron Microscope;SEM) 35
2-4-5 高解析穿透式電子顯微鏡 35
(High Resolution Transmission Electron Microscope;HRTEM) 35
第三章 結果與討論 37
3-1 熱注法合成機制 37
3-2 CsPb(BrxI1-x)3量子點溶液之分析 40
3-2-1 CsPb(BrxI1-x)3量子點溶液之PL分析 40
3-2-2 CsPb(BrxI1-x)3量子點溶液之UV-Vis分析 45
3-2-3 CsPb(BrxI1-x)3量子點溶液之TEM分析 48
3-3 CsPb(BrxI1-x)3量子點粉末之分析 50
3-3-1 OLA型CsPb(BrxI1-x)3量子點粉末 50
3-3-2 APTES型CsPb(BrxI1-x)3量子點粉末 52
3-4 CsPb(BrxI1-x)3量子點薄膜之分析 55
3-5 CsPb(BrxI1-x)3@ SiO2的製備與性質探討 62
3-6 CsPb(BrxI1-x)3 @ SiO2薄膜之分析 67
第四章 結論 74
第五章 參考文獻 76
參考文獻 [1] Jang, E., Jun, S., Jang, H., Lim, J., Kim, B., & Kim, Y., "White‐light‐emitting diodes with quantum dot color converters for display backlights," Adv Mater, vol. 22, pp. 3076-3080, 2010.
[2] L. Protesescu et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut", Nano Lett, vol. 15, no. 6, pp. 3692-3696, 2015.
[3] Naresh, V., Kim, B. H.,Lee, N., "Synthesis of CsPbX3 (X = Cl/Br, Br, and Br/I)@SiO2/PMMA composite films as color-conversion materials for achieving tunable multi-color and white light emission," Nano Res., vol. 14, pp. 1187–1194, 2021.
[4] Weber, D., "CH3NH3PbX3, ein Pb (II)-system mit kubischer perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure," Z. Naturforsch. B, vol. 33, no. 12, pp. 1443-1445, 1978.
[5] Kojima, A., Teshima, K., Shirai, Y., "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc., vol. 131, no. 17, pp. 6050-6051, 2009.
[6] Jeon, N. J. et al., " A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells," Nat. Energy, vol. 3, no. 8, pp. 682-689, 2018.
[7] Nikl, M. et al., "Quantum size effect in the excitonic luminescence of CsPbX3-like quantum dots in CsX (X= Cl, Br) single crystal host," J. Lumin, vol. 72, pp. 377-379, 1997.
[8] Goldschmidt, V. M." The laws of crystal chemistry," Naturwissenschaften, vol. 14, pp. 477– 485, 1926.
[9] Schmidt, L. C. et al., " Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles," J. Am. Chem. Soc., vol. 136, no. 3, pp. 850-853, 2014.
[10] Li, X., Wu, Y., Zhang, S., Cai, B., Gu, Y., Song, J., & Zeng, H., " CsPbX3 quantum dots for lighting and displays: room‐temperature synthesis, photoluminescence superiorities, underlying origins and white light‐emitting diodes," Adv. Funct. Mater, vol. 26, no. 15, pp. 2435-2445, 2016.
[11] Tien, C. H., Chen, L. C., Lee, K. Y., Tseng, Z. L., Dong, Y. S., & Lin, Z. J., " High-quality all-inorganic perovskite CsPbBr3 quantum dots emitter prepared by a simple purified method and applications of light-emitting diodes," Energies, vol. 12, no. 18, pp. 3507, 2019.
[12] Zhao, H., Wei, L., Zeng, P., Liu, M., "Formation of highly uniform thinly-wrapped CsPbX 3@ silicone nanocrystals via self-hydrolysis: suppressed anion exchange and superior stability in polar solvents," J. Mater. Chem. C, vol. 7, no. 32, pp. 9813-9819, 2019.
[13] Akaishi, Y., Pramata, A. D., Tominaga, S., Kawashima, S., Fukaminato, T., Kida, T., "Reversible ON/OFF switching of photoluminescence from CsPbX 3 quantum dots coated with silica using photochromic diarylethene," ChemComm. C, vol. 55, no. 56, pp. 8060-8063, 2019.
[14] Chen, L. C., Chang, Y. T., Tien, C. H., Yeh, Y. C., Tseng, Z. L., Lee, K. L., & Kuo, H. C., "Red Light-Emitting Diodes with All-Inorganic CsPbI 3/TOPO Composite Nanowires Color Conversion Films," Nanoscale Res. Lett, vol. 15, no. 216, pp. 1-9, 2020.
[15] Chen, C., Li, D., Wu, Y., Chen, C., Zhu, Z. G., Shih, W. Y., & Shih, W. H., "Flexible inorganic CsPbI3 perovskite nanocrystal-PMMA composite films with enhanced stability in air and water for white light-emitting diodes," Nanotechnology, vol. 31, no. 22, pp. 225602, 2020.
[16] Song, J., Li, J., Li, X., Xu, L., Dong, Y., & Zeng, H., "Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)," Adv Mater, vol. 27, pp. 7162-7167, 2015.
[17] Begum, R., Chin, X. Y., Damodaran, B., Hooper, T. J., Mhaisalkar, S., & Mathews, N., "Cesium lead halide perovskite nanocrystals prepared by anion exchange for light-emitting diodes," ACS Appl. Nano Mater., vol. 3, no. 2, pp. 1766–1774, 2020.
[18] Pan, J. et al., " Highly efficient perovskite‐quantum‐dot light‐emitting diodes by surface engineering," Adv Mater, vol. 28, pp. 8718-8725, 2016.
[19] Chiba, T. et al., " High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment," ACS Appl. Mater. Interfaces, vol. 9, no. 21, pp. 18054-18060, 2017.
[20] Hsu, S. C. et al., " Improved Long-Term Reliability of a Silica-Encapsulated Perovskite Quantum-Dot Light-Emitting Device with an Optically Pumped Remote Film Package," ACS Omega, vol. 6, no. 4, pp. 2836–2845, 2021.
[21] Eperon, G. E., Paternò, G. M., Sutton, R. J., Zampetti, A., Haghighirad, A. A., Cacialli, F., & Snaith, H. J., "Inorganic caesium lead iodide perovskite solar cells," J. Mater. Chem. A, vol. 3, no. 39, pp. 19688-19695, 2015.
[22] Wang, K. et al., "All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15%," Nat. Commun, vol. 9, no. 1, pp. 1-8, 2018.
[23] Wang, K. et al., " Ruddlesden–Popper 2D Component to Stabilize γ‐CsPbI3 Perovskite Phase for Stable and Efficient Photovoltaics," Adv. Energy Mater, vol. 9, no. 42, pp. 1902529, 2019.
[24] Lim, S. et al., " Suppressed Degradation and Enhanced Performance of CsPbI3 Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers," ACS Appl. Mater. Interfaces, vol. 13, no. 5, pp. 6119–6129, 2021.
[25] Kirakosyan, A., Kim, Y., Sihn, M. R., Jeon, M. G., Jeong, J. R., & Choi, J., " Solubility‐Controlled Room‐Temperature Synthesis of Cesium Lead Halide Perovskite Nanocrystals," ChemNanoMat, vol. 6, no. 12, pp. 1863-1869, 2020.
[26] Kang, T. W. et al., " Enhancement of the optical properties of CsPbBr 3 perovskite nanocrystals using three different solvents," Opt. Lett, vol. 45, no. 18, pp. 4972-4975, 2020.
[27] Almeida, G. et al., " Role of acid–base equilibria in the size, shape, and phase control of cesium lead bromide nanocrystals," ACS nano, vol. 12, no. 2, pp. 1704-1711, 2018.
[28] Zhang, Y. et al., "A “Tips and Tricks” Practical Guide to the Synthesis of Metal Halide Perovskite Nanocrystals," Chem. Mater, vol. 32, no. 13, pp. 5410-5423, 2020.
[29] Sun, S., Yuan, D., Xu, Y., Wang, A., & Deng, Z., " Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature," ACS nano, vol. 10, no. 3, pp. 3648-3657, 2016.
[30] Seth, S., & Samanta, A., " A Facile Methodology for Engineering the Morphology of CsPbX3 Perovskite Nanocrystals under Ambient Condition," Sci. Rep, vol. 6, no. 1, pp. 1-7, 2016.
[31] Han, T. H. et al., " Surface‐2D/bulk‐3D heterophased perovskite nanograins for long‐term‐stable light‐emitting diodes," Adv Mater, vol. 32, pp. 1905674, 2020.
[32] Li, C. et al.," Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing," Nano Energy, vol. 40, pp. 195-202, 2017.
[33] Gupta, S., Kulbak, M., & Cahen, D., " Pin-Hole-Free, Homogeneous, Pure CsPbBr3 Films on Flat Substrates by Simple Spin-Coating Modification," Front. Energy Res, vol. 8, no. 100, pp. 1-6, 2020.
[34] Shin, M., Lee, H. S., Sim, Y. C., Cho, Y. H., Cheol Choi, K., & Shin, B., " Modulation of growth kinetics of vacuum-deposited CsPbBr3 films for efficient light-emitting diodes," ACS Appl. Mater. Interfaces, vol. 12, no. 1, pp. 1944-1952, 2020.
[35] Huang, C. Y., Wu, C. C., Wu, C. L., & Lin, C. W., " CsPbBr3 perovskite powder, a robust and mass-producible single-source precursor: Synthesis, characterization, and optoelectronic applications," ACS omega, vol. 4, no. 5, pp. 8081-8086, 2019.
[36] Fan, Y. et al.,"Scalable ambient fabrication of high-performance CsPbI2Br solar cells.," Joule, vol. 3, no. 10, pp. 2485-2502, 2019.
[37] Ghaithan, Hamid M., et al., " Anion Substitution Effects on the Structural, Electronic, and Optical Properties of Inorganic CsPb (I1–x Br x) 3 and CsPb (Br1–x Cl x) 3 Perovskites: Theoretical and Experimental Approaches", J. Phys. Chem. C, vol. 125, no. 1, pp. 886-897, 2021.
[38] Z. Dang et al., "In Situ Transmission Electron Microscopy Study of Electron Beam-Induced Transformations in Colloidal Cesium Lead Halide Perovskite Nanocrystals", ACS Nano, vol. 11, no. 2, pp. 2124-2132, 2017.
[39] Yu, Y. et al., " Atomic resolution imaging of halide perovskites ", Nano Lett., vol. 16, no. 12, pp. 7530-7535, 2016.
指導教授 詹佳樺(Chia-Hua Chan) 審核日期 2021-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明