博碩士論文 108521086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.118.162.53
姓名 鍾明澔(Mimg-Hao Chung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高功率之雙向交錯式直流轉換器設計
(Design of a High Power Bi-Directional Interleaved DC-DC Converter)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,環保意識抬頭,電動車蓬勃發展,由於汽車上同時存在
12 V 與 48 V 系統,因此本文設計可調節功率的雙向直流/直流轉換
器,主要功能為調度車內 12 V 系統與 48 V 系統間的能量。藉由此轉
換器之設計,電能可以根據負載需要雙向傳輸來滿足車內不同的電壓
系統,並同時有相當高的轉換效率。
本 文 的 硬 體 架 構 主 要 為 交 錯 式 (Interleaved) 同 步 整 流
(Synchronous Rectification)雙向轉換電路,採用 Linear 公司(已於 2016
年被 ADI 併購)所生產之型號 LTC3871 晶片,其擁有電路軟啟動(Soft
Start)、電壓電流動態調節、過壓過流保護、熱停機(Thermal Shutdown)
及多相均流機制(Current-Sharing mechanism)等功能。此晶片獨立運作
時最高切換頻率可達 550 kHz,亦能利用其內部之鎖相迴路(Phase
Lock Loop)產生最高 460 kHz 的同步訊號執行高達 12 相(6 個 IC,每
個 IC 有 2 相)之連動操作,使其能在高頻下工作減少被動元件的體
積,充分利用車內侷限的空間並同時滿足高功率之需求;此外,也配
合同步整流技術進一步提高轉換效率。
摘要(英) In recent years, the awareness of environmental protection has risen
and electric vehicles have flourished. Due to the presence of both 12 V
and 48 V systems in automobiles, this paper designs a bidirectional
DC/DC converter with adjustable power. The main function is to dispatch
the energy flow between 12V and 48V system in the automobile. With the
design of this converter, electric energy can be transmitted in both
directions according to load requirements to meet different voltage
systems in the car, and at the same time, it has a fairly high conversion
efficiency.
The hardware architecture of this article is mainly an interleaved
synchronous rectification (Synchronous Rectification) two-way
conversion circuit, using the model LTC3871 chip produced by Linear
Corporation (which was acquired by ADI in 2016), which has a soft start
circuit (Soft Start) , Voltage and current dynamic adjustment,
overvoltage and overcurrent protection, thermal shutdown (Thermal
Shutdown) and multi-phase current-sharing mechanism (Current-Sharing
mechanism) and other functions. The maximum switching frequency of
this chip can be up to 550 kHz when it operates independently, and it can
also use its internal Phase Lock Loop to generate a synchronization signal
of up to 460 kHz to perform up to 12 phases (6 ICs, each IC has 2 phases)
The interlocking operation enables it to work at high frequencies to
reduce the volume of passive components, make full use of the limited
space in the car and meet the demand for high power at the same time; in
addition, it also cooperates with synchronous rectification technology to
further improve the conversion efficiency.
關鍵字(中) ★ 交錯式轉換器
★ 同步整流
★ 多相連動操作
★ 均流機制
關鍵字(英)
論文目次 目錄
論文摘要.........................................................................................................................i
Abstract.........................................................................................................................ii
致謝............................................................................................................................... iii
目錄............................................................................................................................... iv
圖目錄............................................................................................................................ v
第一章 緒論............................................................................................................1
1-1 研究背景........................................................................................................1
1-2 研究動機與目的............................................................................................2
1-3 論文大綱........................................................................................................3
第二章 直流轉換器分類及控制方法 .........................................................................5
2-1 線性低壓差穩壓器(Low Drop-out Regulator ,LDO) ................................5
2-2 切換式直流轉換器........................................................................................7
2-2-1 隔離型轉換器.....................................................................................7
2-2-2 非隔離型轉換器...............................................................................11
2-3 直流轉換器控制方法..................................................................................14
2-3-1 電壓控制法.......................................................................................15
2-3-2 電流控制法.......................................................................................16
2-3-3 磁滯控制...........................................................................................17
第三章 交錯式同步雙向直流轉換器及均流機制 ...................................................18
3-1 多相交錯技術(Multi-phase Interleaving).................................................18
3-2 雙向直流-直流轉換器.................................................................................19
3-3 同步整流原理..............................................................................................20
3-4 交錯式同步整流雙向轉換器......................................................................22
3-5 電路架構......................................................................................................22
3-6 多轉換器併聯之均流機制..........................................................................25
第四章 硬體電路規劃 ...............................................................................................28
4-1 實際硬體電路..............................................................................................28
4-2 IC 周邊腳位設定.......................................................................................29
4-2-1 供電與驅動相關腳位.......................................................................32
4-2-2 基礎設定腳位...................................................................................34
4-2-3 回授控制與偵測相關腳位...............................................................35
4-2-4 故障保護相關設定...........................................................................39
v
4-2-5 多相併聯 IC 通訊腳位 ....................................................................40
4-3 開關元件選用..............................................................................................43
4-4 轉換器並聯連接腳位..................................................................................44
4-5 實體電路架構..............................................................................................46
第五章 實驗結果 .......................................................................................................49
5-1 實驗結果......................................................................................................49
第六章 結論及未來發展 ...........................................................................................51
參考文獻......................................................................................................................52
圖目錄
圖 1- 1 12V/48V 車內混合系統....................................................................................2
圖 2-1 低壓差線性穩壓器............................................................................................5
圖 2-2 反馳式轉換器....................................................................................................8
圖 2-3 開關 M1 導通時電流流向................................................................................8
圖 2-4 開關 M1 關閉時電流流向................................................................................9
圖 2-5 全橋式轉換器....................................................................................................9
圖 2-6 開關 Q1 及 Q4 導通時電流流向 ...................................................................10
圖 2-7 變壓器一次側電壓波形..................................................................................10
圖 2-8 開關 Q2 及 Q 導通時電流流向 ..................................................................... 11
圖 2-9 降壓轉換器...................................................................................................... 11
圖 2-10 開關 M1 導通時電流流向............................................................................12
圖 2-11 開關 M1 關閉時電流流向............................................................................12
圖 2-12 升壓轉換器....................................................................................................12
圖 2-13 開關 M1 導通時電流流向............................................................................13
圖 2-14 開關 M1 關閉時電流流向............................................................................13
圖 2-15 升降壓轉換器................................................................................................14
圖 2-16 電壓控制法架構圖........................................................................................15
圖 2-17 電流控制法架構圖........................................................................................16
圖 3-1 兩相位交錯之電流漣波..................................................................................18
圖 3-2 雙向直流轉換器..............................................................................................19
圖 3-3 有無同步整流之電路功率耗損比較..............................................................22
vi
圖 3-4 單 IC 之轉換器架構圖...................................................................................23
圖 3-5 升壓模式電流流向..........................................................................................24
圖 3-6 降壓模式電流流向..........................................................................................24
圖 3-7 單 IC 轉換器實體圖.......................................................................................25
圖 3-8 轉換器均流能力與輸出阻抗的關係..............................................................26
圖 4-1 多 IC 轉換器架構示意圖...............................................................................29
圖 4-2 典型 IC 應用電路...........................................................................................31
圖 4-3 IC 內部功能方塊圖.........................................................................................31
圖 4-4 V5 腳位電阻分壓設定 ....................................................................................33
圖 4-5 IC 電流偵測腳位外部連接圖.........................................................................39
圖 4-6 鎖相迴路(PLL)方塊圖...................................................................................41
圖 4-7 多相位操作設定圖..........................................................................................42
圖 4-8 兩並聯 IC 連接訊號設定圖...........................................................................45
圖 4-9 主板控制 IC 電路圖.......................................................................................46
圖 4-10 主板功率級電路圖........................................................................................46
圖 4-11 副板控制 IC 電路圖 .....................................................................................47
圖 4-12 副板功率級電路圖........................................................................................47
圖 4-13 實際電路........................................................................................................48
圖 5-1 降壓模式各相下臂 PWM 訊號 .....................................................................49
圖 5-2 輸出及輸入電壓波形......................................................................................49
圖 5-3 升壓模式各相下臂 PWM 訊號 .....................................................................50
圖 5-4 輸出及輸入電壓波形......................................................................................50
表目錄
表 4- 1 DRVSET 設定................................................................................................33
表 4- 2 ILIM 設定 ......................................................................................................37
表 4- 3 PHSMD 相位配置..........................................................................................43
參考文獻 [1] Mohan, Undeland, Robins, 江炫樟 , 「電力電子學 Power
Electronics 第三版」, 全華圖書股份有限公司, 民國 103 年.
[2] 鄭培璿, 「電力電子分析與模擬 Power Electronics Analysis And
Simulation 第四版」, 全華圖書股份有限公司, 民國 100 年.
[3] Ali Emadi, Alireza Khaligh, Zhong Nie, Young Joo Lee, “Integrated
Power Electronic Converters and Digital Control,” CRC Press, 2009.
[4] Robert Selders, Jr., “Synchronous rectification in high-performance
power converter design,” Texas Instrument Incorporated, September
2016.
[5] Anthony Fagnani, “Synchronous rectification boosts efficiency by
reducing power loss,” Texas Instrument Incorporated, 2013.
[6] C. Blake, D. Kinzer and P. Wood, “Synchronous rectifiers versus
Schottky diodes: a comparison of the losses of a synchronous
rectifier versus the losses of a Schottky diode rectifier,” Proceedings
of 1994 IEEE Applied Power Electronics Conference and Exposition
- ASPEC′94, Orlando, FL, USA, 1994, pp. 17-23 vol.1.
[7] J.-W. Lim, H.-J. Kim, and J.-S. Choi, “Research on a 2.5kW 8-Phase
Bi-directional Converter for Mild Hybrid Electric
Vehicles,” Transactions of the Korean Society of Automotive
Engineers, vol. 25, no. 1, pp. 82–91, Jan. 2017.
[8] Carmen Parisi, “Multiphase Buck Design From Start to Finish (Part
1),” Texas Instrument Incorporated, April 2017.
[9] David Baba, “Under the Hood of a Multiphase Synchronous
53
Rectified Boost Converter,” Texas Instruments Power Supply
Design Seminar SEM2100, Topic 4, 2014.
[10]O. Garcia, P. Zumel, A. de Castro and A. Cobos, “Automotive
DC-DC bidirectional converter made with many interleaved buck
stages,” in IEEE Transactions on Power Electronics, vol. 21, no. 3,
pp. 578-586, May 2006.
[11]Wei Chen, “High Efficiency High Density Polyphase Converters for
High Current Applications,” Application note 77, Linear Technology
Inc., Sep. 1999.
[12]Brigitte Hauke, “Basic Calculation of a Buck Converter’s Power
Stage,” Texas Instrument Incorporated, December 2011.
[13]Brigitte Hauke, “Basic Clculation of a Boost Converter’s Power
Stage,” Texas Instrument Incorporated, November 2009.
[14] 黃玉萍, 「具虛擬斜坡電流平衡技術之電壓模式多相位降壓轉
換器」, 民國 100 年 9 月.
[15] Bosheng Sun, Ian Bower, “How to parallel two DC/DC converters
with digital controllers,”Texas Instrument Incorporated, 2018.
[16]“Current sharing in power arrays”, Design Guide & Application
Manual.For Maxi, Mini, Micro Family DC-DC Converter and
Accessory Modules, Vicor Incorporated, January 2021.
[17]LTC3871, Datasheet, Linear Technology corporation, 2016.
[18] BSC040N08NS5, Datasheet, Infineon Technology, 2014.
[19] BSC117N08NS5, Datasheet, Infineon Technology, 2014.
[20] “Reducing EMI in buck converters,”Richtek Incorporated.
[21] B.Danker, “Fundamentals of Electromagnetic Compatibility 2nd
54
edition.”
指導教授 陳正一(Cheng-I Chen) 審核日期 2021-10-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明