博碩士論文 108323070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:18.119.121.170
姓名 鄭翰陽(Han-Yang Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 PVT生長氮化鋁單晶過程中坩堝及晶種對長晶條件之影響
(Influence of crucible and seed on crystal growth conditions in the process of PVT growth of AlN single crystal)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 物理氣相傳輸法(Physical Vapor Transport , PVT)是一種利用昇華的方式生長氮化鋁單晶晶體的方法,由於生長過程中的質傳會受到溫場造成的飽和氣壓差影響,因此長晶溫場控制相當重要。本研究將透過數值模擬針對不同坩堝、塗層以及晶種材料分析其對長晶條件之影響。結果顯示石墨內坩堝因為導電率較低,最大熱源分布於外坩堝,而石墨內坩堝的熱源呈現從坩堝底部遞減至上蓋的分布,由於石墨坩堝之導電率較低的關係,使晶種溫度較高於其他材料,可達到較高的長晶速率( 0.05 mm⁄hr),然而石墨內坩堝易被鋁蒸氣侵蝕,需要在坩堝表面鍍上保護層防止汙染,模擬結果顯示,坩堝表面塗層材料對晶種表面溫場影響甚微,因此保護層材料使用不會造成晶體扭曲之碳化鉭較佳。最後碳化矽晶種因為不透光的特性,晶種內部的溫度梯度(0.1-0.19 K/cm)比透光的氮化鋁晶種(0.29-24.7 K/cm)來得小,產生熱應力會比較小,不易產生差排,造成在相同功率下,使用碳化矽晶種長晶會較好。
摘要(英) Physical Vapor Transport (PVT) is a method of growing aluminum nitride single crystal crystals by sublimation. Since the mass transfer during the growth process will be affected by the saturation pressure difference caused by the temperature field, the control of the crystal growth temperature field is very important. This study will analyze the influence of different crucibles, coatings, and seed materials on the growth conditions through numerical simulation. The results show that since the graphite inner crucible has low electrical conductivity. The largest heat source is distributed in the outer crucible, while the heat source of the graphite inner crucible decreases from the bottom of the crucible to the lid. Due to the lower conductivity of the graphite crucible, the temperature of the seed crystal is higher than other materials, and a higher crystal growth rate( 0.05 mm⁄hr) can be achieved. However, the graphite inner crucible is easily corroded by aluminum vapor, and a protective layer needs to be plated on the surface of the crucible to prevent contamination. The simulation results show that the surface of the crucible is coated the layer material has little effect on the surface temperature field of the seed crystal, so it is better to use tantalum carbide that does not cause crystal distortion as the protective layer material. Finally, because of the opaque nature of the silicon carbide seed crystal, the temperature gradient inside the seed crystal (0.1-0.19 K/cm) is smaller than that of the transparent aluminum nitride seed crystal (0.29-24.7 K/cm). The thermal stress generated is relatively small, and it is not easy to produce defects. As a result, it is better to use silicon carbide seed crystals to grow crystals under the same power.
關鍵字(中) ★ 物理氣相傳輸法
★ 氮化鋁
★ 內坩堝材料
★ 晶種
關鍵字(英) ★ physical vapor transport method
★ aluminum nitride
★ inner crucible material
★ seed crystal
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1.1 研究背景 1
1.2 坩堝材料與耐用關係 2
1.3 碳化鉭塗層 3
1.4 文獻回顧 3
1.4.1物理氣相傳輸法生長氮化鋁的條件 3
1.4.2 物理氣相傳輸法-質傳 4
1.4.3 溫度梯度對長晶速率的影響 4
1-5 研究動機與目的 4
第二章 研究方法 8
2.1模型幾何 8
2.2物理系統 8
2.3基本假設 10
2.4統御方程式 10
2.5邊界條件 13
2.6腔體材料性質參數 14
第三章 數值方法 21
3.1 數值分析求解 21
3.2 網格配置 22
3.3 輻射解析度測試 25
3.4 收斂誤差測試 30
3.5 離散座標法測試 32
第四章 結果與討論 34
4.1 自然對流驗證以及模擬 34
4.2 不同坩堝材料對坩堝溫場影響 38
4.3 塗層材料對輻射熱傳之影響 44
4.4 塗層熱傳導對坩堝溫度之影響 47
4.5 塗層對晶種徑向溫度梯度和軸向溫度梯度影響 49
4.6 不同坩堝材質對晶種溫場與長晶速率之影響 51
4.7 三維線圈幾何與驗證 54
4.8 三維腔體自然對流驗證 61
4.9 參與介質驗證 64
4.10 參與介質與不透光介質溫場比較 72
第五章 結論與未來研究方向 76
5.1 結論 76
5.2 未來研究方向 77
參考文獻 78
參考文獻 [1] A. F. Wright and J. S. Nelson, “Consistent structural properties for AlN, GaN, and InN”, American Physical Society, 51(12), 7866-7869 (1995)
[2] J. Komiyama, Y. Abe, S. Suzuki, and H. Nakanishi, “Stress reduction in epitaxial GaN films on Si using cubic SiC as intermediate layers”, Journal of applied physics, 100, 033519 (2006)
[3] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide et al, “Thermal stress in GaN epitaxial layers grown on sapphire substrates”, Journal of applied physics, 77(9), 4389-4392 (1995)
[4] C. Hartmann, L. Matiwe , J. Wollweber , I. Gamov , K. Irmscher , M. Bickermann and T. Straubinger, “Favourable growth conditions for the preparation of bulk AlN single crystals by PVT”, CrystEngComm, 22, 1762-1768 (2020)
[5] S. Xiao, N. Jiang, K. Shojiki, K. Uesugi, H. Miyake, “Preparation of high-quality thick AlN layer on nanopatterned sapphire substrates with sputter-deposited annealed AlN film by hydride vapor-phase epitaxy”, Japanese Journal of Applied Physics, 58, SC1003 (2019)
[6] F. Li, L. Wang, W. Yao, Y. Meng, S. Yang, Z. Wang, “Analysis of growth rate and crystal quality of AlN epilayers by flow-modulated metal organic chemical vapor deposition”, Superlattices and Microstructures, 137, 106336 (2020)
[7] R. Schlesser, Z. Sitar, R. Dalmau, R. Collazo, Y. Li, “Crucible materials for growth of aluminum nitride crystals”, Journal of crystal growth, 281(1), 75-80 (2005)
[8] G. A. Slack, T.F. Mcnelly, “growth of high purity AlN crystals”, Journal of crystal growth, 34(2), 263-279 (1976)
[9] I. T. Martin, C. W. Teplin, P. Stradins, M. Landry, M. Shub, R. C. Reedy, “High rate hot-wire chemical vapor deposition of silicon thin films using a stable TaC covered graphite filament”, Thin solid film, 519(14), 4585-4588(2011)
[10] Z. K. Chen, X. Xiong, B. Y. Huang, G. D. Li, F. Zheng, P. Xiao, H. B. Zhang, and J. Yin, “Phase composition and morphology of TaC coating on carbon fibers by chemical vapor infiltration”, Thin Solid Films, 516(23), 8248-8254(2008)
[11] X. Xiong, Z. K. Chen, B. Y. Huang, G. D. Li, F. Zheng, P. Xiao, and H. B. Zhang, “Surface morphology and preferential orientation growth of TaC crystals formed by chemical vapor deposition”, Thin Solid Films, 517(11), 3235-3239 (2009)
[12] D. Nakamura, A. Suzumura, and K. Shigetoh, “Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth”, Applied Physics Letters, 106, 082108 (2015)
[13] C. Hartmann, A. Dittmar, J. Wollweber and M. Bickermann,”Bulk AlN growth by physical vapour transport”, Semiconductor Science and Technology, 29, 084002 (2014)
[14] V. Noveski, R. Schlesser, S. Mahajan, S. Beaudoin, Z. Sitar “Mass transfer in AlN crystal growth at high temperatures”, Journal of crystal growth, 264, 369-378 (2004)
[15] G. Wang, L. Zhang, Y. Wang, Y. Shao, C. Chen, G. Liu, Y. Wu, and X. Hao, ”Effect of Temperature Gradient on AlN Crystal Growth by Physical Vapor Transport Method”, Crystal growth and design, 19, 6736-6742 (2019)
[16] Q. Wang, J. Huang, Z. Wang, G. He, D. Lei, J. Gong, and L. Wu, “Anisotropic Three-Dimensional Thermal Stress Modeling and Simulation of Homoepitaxial AlN Single Crystal Growth by the Physical Vapor Transport Method”, Crystal growth and design, 18 (5), 2998-3007 (2018)
[17] Y. Yu, B. Liu, X. Tang, S. Liu and B. Gao “Homogenization of Radial Temperature by a Tungsten Sink in Sublimation Growth of 45 mm AlN Single Crystal”, Materials, 13(23), 5553 (2020)
[18] D. Nakamura “Simple and quick enhancement of SiC bulk crystal growth using a newly developed crucible Material”, Applied Physics Express, 9, 055507 (2016)
[19] D. V. Prosvirnin, A. G. Kolmakov, M. D. Larionov, M. E. Prutskov, A. S. Alikhanyan, A. V. Samokhin, A. S. Lysenkov and D. D. Titov “Effect of sintering methods and temperatures on porosity of the ceramics from aluminum oxynitride”, IOP Conference Series: Materials Science and Engineering, 347, 012030 (2018)
[20] M. Strassburg, J. Senawiratne, and N. Dietz, U. Haboeck and A. Hoffmann, V. Noveski, R. Dalmau, R. Schlesser, and Z. Sitar “The growth and optical properties of large, high-quality AlN single crystals”, Journal of Applied Physics, 96(10), 5870 (2004)
[21] D. Duc, I. Naoki, F. Kazuyoshi “A study of near-infrared nanosecond laser ablation of silicon carbide”, International Journal of Heat and Mass Transfer, 65 , 713-718 (2013)
[22] B. Wu, R. Ma, H. Zhang, V. Prasad “Modeling and simulation of AlN bulk sublimation growth systems”, Journal of Crystal Growth, 266(1-3), 303-312 (2004)
[23] COMSOL Multiphysics Ver. 5.6
[24] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, “Fundamentals of Heat and Mass Transfer”, Sixth edition, 812 (2007)
[25] B Wu, R Ma, H Zhang, M Dudley, R Schlesser, Z Sitar “Growth Kinetics and Thermal Stress in AlN Bulk Crystal Growth”, Journal of Crystal Growth, 253(1-4), 326-339 (2003)
[26] D.W. Brenner, R. Schlesser, Z. Sitar, R. Dalmau, R. Collazo, Y. Li, “Model for the influence of boron impurities on the morphology of AlN grown by physical vapor transport”, Surface Science, 560(1-3), L202-L206 (2004)
[27] J. Pastrňák, L. Roskovcová, “Refraction Index Measurements on AlN Single Crystals”, Physica Status Solidi(b), 14, K5-K8 (1966)
[28] P. Łapka, P. Furman’ski, “Fixed Cartesian grid based numerical model for solidification process of semi-transparent materials II: Reflection and refraction or transmission of the thermal radiation at the solid–liquid interface”, International Journal of Heat and Mass Transfer, 55(19-20), 4953-4964 (2012)
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2021-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明