參考文獻 |
[1] Shortall, R., B. Davidsdottir, and G. Axelsson. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks". Renewable and Sustainable Energy Reviews, 44, 391-406. 2015.
[2] Lal, R. "Carbon sequestration". Philosophical Transactions of the Royal Society B: Biological Sciences, 363 (1492), 815-830. 2008.
[3] Omer, A. M. "Energy, environment and sustainable development". Renewable and Sustainable Energy Reviews, 12 (9), 2265-2300. 2008.
[4] Tester, J. W., B. J. Anderson, A. Batchelor, D. Blackwell, R. DiPippo, E. Drake, J. Garnish, B. Livesay, M. Moore, and K. Nichols. "The future of geothermal energy". Massachusetts Institute of Technology, 358, 2006.
[5] Birkholzer, J. T., C.-F. Tsang, A. E. Bond, J. A. Hudson, L. Jing, and O. Stephansson. "25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes". International Journal of Rock Mechanics and Mining Sciences, 122, 103995. 2019.
[6] JNC. H12 : Project to establish the scientific and technical basis for HLW disposal in Japan. Overview Report. JNC TN1410 2000-001. 2000.
[7] Tsang, C.-F., O. Stephansson, L. Jing, and F. Kautsky. "DECOVALEX Project: from 1992 to 2007". Environmental Geology, 57 (6), 1221-1237. 2009.
[8] 台灣電力公司,(2017),用過核子燃料最終處置計畫潛在處置母岩特性調查與評估階段我國用過核子燃料最終處置技術可行性評估報告SNFD2017報告(TPC-SNFD2017-V1)。
[9] 行政院原子能委員會,(https://www.aec.gov.tw/)。
[10] SKB. "Final repository facility Underground design premises/D2". 2007.
[11] Karanki, D. R., H. S. Kushwaha, A. K. Verma, and S. Ajit. "Uncertainty analysis based on probability bounds (p‐box) approach in probabilistic safety assessment". Risk Analysis: An International Journal, 29 (5), 662-675. 2009.
[12] Buchwald, J., A. Chaudhry, K. Yoshioka, O. Kolditz, S. Attinger, and T. Nagel. "DoE-based history matching for probabilistic uncertainty quantification of thermo-hydro-mechanical processes around heat sources in clay rocks". International Journal of Rock Mechanics and Mining Sciences, 134, 104481. 2020.
[13] Rutqvist, J., D. Barr, J. T. Birkholzer, K. Fujisaki, O. Kolditz, Q.-S. Liu, T. Fujita, W. Wang, and C.-Y. Zhang. "A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories". Environmental Geology, 57 (6), 1347-1360. 2009.
[14] Pan, P.-Z., X.-T. Feng, X.-H. Huang, Q. Cui, and H. Zhou. "Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton". Environmental Geology, 57 (6), 1299. 2009.
[15] Garitte, B., T. Nguyen, J. Barnichon, B. Graupner, C. Lee, K. Maekawa, C. Manepally, G. Ofoegbu, B. Dasgupta, and R. Fedors. "Modelling the Mont Terri HE-D experiment for the Thermal–Hydraulic–Mechanical response of a bedded argillaceous formation to heating". Environmental Earth Sciences, 76 (9), 345. 2017.
[16] Wang, S.-J., J.-Y. Chen, and K.-C. Hsu. "Investigation of cross-interactions of coupled thermal-hydraulic-mechanical model using stochastic simulations". Computers and Geotechnics, 133, 104020. 2021.
[17] Biot, M. A. "General theory of three‐dimensional consolidation". Journal of Applied Physics, 12 (2), 155-164. 1941.
[18] Terzaghi, K., R. B. Peck, and G. Mesri. Soil mechanics in engineering practice. John Wiley & Sons. 1996.
[19] Biot, M. A. "Thermoelasticity and Irreversible Thermodynamics". Journal of Applied Physics, 27, 1956.
[20] McTigue, D. "Thermoelastic response of fluid‐saturated porous rock". Journal of Geophysical Research: Solid Earth, 91 (B9), 9533-9542. 1986.
[21] Narasimhan, T., and P. Witherspoon. "Numerical model for saturated‐unsaturated flow in deformable porous media 1. Theory". Water Resources Research, 13 (3), 657-664. 1977.
[22] Sandhu, R. S., and E. L. Wilson. "Finite-element analysis of seepage in elastic media". Journal of the Engineering Mechanics Division, 95 (3), 641-652. 1969.
[23] Ghaboussi, J., and E. L. Wilson. "Flow of compressible fluid in porous elastic media". International Journal for Numerical Methods in Engineering, 5 (3), 419-442. 1973.
[24] Safai, N. M., and G. F. Pinder. "Vertical and horizontal land deformation in a desaturating porous medium". Advances in Water Resources, 2, 19-25. 1979.
[25] Noorishad, J., C. Tsang, and P. Witherspoon. "Coupled thermal‐hydraulic‐mechanical phenomena in saturated fractured porous rocks: Numerical approach". Journal of Geophysical Research: Solid Earth, 89 (B12), 10365-10373. 1984.
[26] Council, N. R. Disposition of high-level waste and spent nuclear fuel: The continuing societal and technical challenges. National Academies Press. 2001.
[27] Wang, X., H. Shao, J. Hesser, and O. Kolditz. "Analysis of the THM behaviour in a clay-based engineered barrier system (EBS): modelling of the HE-E experiment (Mont Terri URL)". Environmental Earth Sciences, 75 (20), 1350. 2016.
[28] Nguyen, T., A. Selvadurai, and G. Armand. "Modelling the FEBEX THM experiment using a state surface approach". International Journal of Rock Mechanics and Mining Sciences, 42 (5-6), 639-651. 2005.
[29] Chijimatsu, M., T. Nguyen, L. Jing, J. De Jonge, M. Kohlmeier, A. Millard, A. Rejeb, J. Rutqvist, M. Souley, and Y. Sugita. "Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 1: Conceptualization and characterization of the problems and summary of results". International Journal of Rock Mechanics and Mining Sciences, 42 (5-6), 720-730. 2005.
[30] Chan, T., and F. Stanchell,(2008),DECOVALEX-THMC Project. TASK E. Implications of Glaciation and Coupled Thermohydromechanical Processes on Shield Flow System Evolution and Performance Assessment. Final Report.
[31] Kolditz, O., S. Bauer, L. Bilke, N. Böttcher, J.-O. Delfs, T. Fischer, U. J. Görke, T. Kalbacher, G. Kosakowski, and C. McDermott. "OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media". Environmental Earth Sciences, 67 (2), 589-599. 2012.
[32] Millard, A., A. Rejeb, M. Chijimatsu, L. Jing, J. De Jonge, M. Kohlmeier, T. Nguyen, J. Rutqvist, M. Souley, and Y. Sugita. "Numerical study of the THM effects on the near-field safety of a hypothetical nuclear waste repository—BMT1 of the DECOVALEX III project. Part 2: effects of THM coupling in continuous and homogeneous rocks". International Journal of Rock Mechanics and Mining Sciences, 42 (5-6), 731-744. 2005.
[33] Wang, W., G. Kosakowski, and O. Kolditz. "A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media". Computers & Geosciences, 35 (8), 1631-1641. 2009.
[34] Gallup, D. L. "Production engineering in geothermal technology: a review". Geothermics, 38 (3), 326-334. 2009.
[35] Jacquey, A. B., M. Cacace, G. Blöcher, N. Watanabe, E. Huenges, and M. Scheck-Wenderoth. "Thermo-poroelastic numerical modelling for enhanced geothermal system performance: Case study of the Groß Schönebeck reservoir". Tectonophysics, 684, 119-130. 2016.
[36] Watanabe, N., W. Wang, C. I. McDermott, T. Taniguchi, and O. Kolditz. "Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media". Computational Mechanics, 45 (4), 263-280. 2010.
[37] Tortike, W., and S. Ali. "Reservoir simulation integrated with geomechanics". Journal of Canadian Petroleum Technology, 32 (05), 1993.
[38] Smith, J. D. "A Stochastic Evaluation of Geothermal Reservoir Potential for the Tuscarora Sandstone in Morgantown, West Virginia, USA". Geothermal Resources Council Transactions. 43, 902-925. 2019.
[39] Hyne, N. J. Nontechnical guide to petroleum geology, exploration, drilling & production. PennWell Books, LLC. 2019.
[40] Detournay, E. "Coupled thermo-hydro-mechanical processes in rock mechanics, with applications to the petroleum industry". 8th ISRM Congress, 1995.
[41] Ellsworth, W. L. "Injection-induced earthquakes". Science, 341 (6142), 2013.
[42] Holland, A. A. "Earthquakes triggered by hydraulic fracturing in south‐central Oklahoma". Bulletin of the Seismological Society of America, 103 (3), 1784-1792. 2013.
[43] Zoback, M. D., and H. P. Harjes. "Injection‐induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany". Journal of Geophysical Research: Solid Earth, 102 (B8), 18477-18491. 1997.
[44] Sun, X., H. Luo, and K. Soga. "A coupled thermal–hydraulic–mechanical–chemical (THMC) model for methane hydrate bearing sediments using COMSOL Multiphysics". Journal of Zhejiang University-SCIENCE A, 19 (8), 600-623. 2018.
[45] Yin, S., B. F. Towler, M. B. Dusseault, and L. Rothenburg. "Fully coupled THMC modeling of wellbore stability with thermal and solute convection considered". Transport in Porous Media, 84 (3), 773-798. 2010.
[46] Freeman, T. T., R. J. Chalaturnyk, and I. I. Bogdanov. "Fully coupled thermo-hydro-mechanical modeling by COMSOL Multiphysics, with applications in reservoir geomechanical characterization". COMSOL Conf, 9-11. 2008.
[47] Yin, S., M. B. Dusseault, and L. Rothenburg. "Thermal reservoir modeling in petroleum geomechanics". International Journal for Numerical and Analytical Methods in Geomechanics, 33 (4), 449-485. 2009.
[48] Olivier, J. G., K. Schure, and J. Peters. "Trends in global CO2 and total greenhouse gas emissions". PBL Netherlands Environmental Assessment Agency, 5, 2017.
[49] Fang, Y., B. N. Nguyen, K. Carroll, Z. Xu, S. B. Yabusaki, T. D. Scheibe, and A. Bonneville. "Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration". International Journal of Rock Mechanics and Mining Sciences, 62, 138-147. 2013.
[50] Vilarrasa, V., D. Bolster, S. Olivella, and J. Carrera. "Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers". International Journal of Greenhouse Gas Control, 4 (6), 910-919. 2010.
[51] Lemieux, J.-M. "The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources". Hydrogeology Journal, 19 (4), 757-778. 2011.
[52] Bohnhoff, M., M. Zoback, L. Chiaramonte, J. Gerst, and N. Gupta. "Seismic detection of CO2 leakage along monitoring wellbores". International Journal of Greenhouse Gas Control, 4 (4), 687-697. 2010.
[53] Zhang, R., X. Yin, P. H. Winterfeld, and Y.-S. Wu. "A fully coupled thermal-hydrological-mechanical-chemical model for CO2 geological sequestration". Journal of Natural Gas Science and Engineering, 28, 280-304. 2016.
[54] Fan, C., D. Elsworth, S. Li, L. Zhou, Z. Yang, and Y. Song. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery". Energy, 173, 1054-1077. 2019.
[55] Sibson, R. "Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief". Nature Physical Science, 243 (126), 66-68. 1973.
[56] Jeffreys, H. "On the mechanics of faulting". Geological Magazine, 79 (5), 291-295. 1942.
[57] Lachenbruch, A. H. "Frictional heating, fluid pressure, and the resistance to fault motion". Journal of Geophysical Research: Solid Earth, 85 (B11), 6097-6112. 1980.
[58] Mase, C. W., and L. Smith. "Pore-fluid pressures and frictional heating on a fault surface". Pure and Applied Geophysics, 122 (2), 583-607. 1984.
[59] Mase, C. W., and L. Smith. "Effects of frictional heating on the thermal, hydrologic, and mechanical response of a fault". Journal of Geophysical Research: Solid Earth, 92 (B7), 6249-6272. 1987.
[60] Noda, H., and T. Shimamoto. "Thermal pressurization and slip-weakening distance of a fault: An example of the Hanaore fault, southwest Japan". Bulletin of the Seismological Society of America, 95 (4), 1224-1233. 2005.
[61] Ujiie, K., H. Tanaka, T. Saito, A. Tsutsumi, J. J. Mori, J. Kameda, E. E. Brodsky, F. M. Chester, N. Eguchi, and S. Toczko. "Low coseismic shear stress on the Tohoku-Oki megathrust determined from laboratory experiments". Science, 342 (6163), 1211-1214. 2013.
[62] De Paola, N., T. Hirose, T. Mitchell, G. Di Toro, C. Viti, and T. Shimamoto. "Fault lubrication and earthquake propagation in thermally unstable rocks". Geology, 39 (1), 35-38. 2011.
[63] Faulkner, D., T. Mitchell, J. Behnsen, T. Hirose, and T. Shimamoto. "Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs". Geophysical Research Letters, 38 (18), 2011.
[64] Badt, N. Z., T. E. Tullis, G. Hirth, and D. L. Goldsby. "Thermal pressurization weakening in laboratory experiments". Journal of Geophysical Research: Solid Earth, 125 (5), e2019JB018872. 2020.
[65] Rattez, H., I. Stefanou, and J. Sulem. "The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis". Journal of the Mechanics and Physics of Solids, 115, 54-76. 2018.
[66] Rattez, H., I. Stefanou, J. Sulem, M. Veveakis, and T. Poulet. "The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part II: Numerical implementation and post-bifurcation analysis". Journal of the Mechanics and Physics of Solids, 115, 1-29. 2018.
[67] Biot, M. A. "Mechanics of deformation and acoustic propagation in porous media". Journal of Applied Physics, 33 (4), 1482-1498. 1962.
[68] Nield, D. A., and A. Bejan. Convection in Porous Media. 2013.
[69] Mainguy, M., and P. Longuemare. "Coupling fluid flow and rock mechanics: formulations of the partial coupling between reservoir and geomechanical simulators". Oil & Gas Science and Technology, 57 (4), 355-367. 2002.
[70] Touhidi-Baghini, A. "Absolute permeability of McMurray formation oil sands at low confining stresses". Alberta University. Doctor of Philosophy. Fall 1998.
[71] Reid, R. C., J. M. Prausnitz, and B. E. Poling. The properties of gases and liquids. 1987.
[72] Chen, Y.-L., S.-R. Wang, J. Ni, R. Azzam, and T. M. Fernandez-Steeger. "An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics". Engineering Geology, 220, 234-242. 2017.
[73] Dwivedi, R., R. Goel, V. Prasad, and A. Sinha. "Thermo-mechanical properties of Indian and other granites". International Journal of Rock Mechanics and Mining Sciences, 45 (3), 303-315. 2008.
[74] Zio, E. Monte carlo simulation: The method. Springer. 2013.
[75] Mooney, C. Z. Monte carlo simulation. Sage. 1997.
[76] Dagan, G. "Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 1. Conditional simulation and the direct problem". Water Resources Research, 18 (4), 813-833. 1982.
[77] Pebesma, E. J., and C. G. Wesseling. "Gstat: a program for geostatistical modelling, prediction and simulation". Computers & Geosciences, 24 (1), 17-31. 1998.
[78] Deutsch, C. V., and A. G. Journel. "Geostatistical software library and user’s guide". New York, 119 (147), 1992.
[79] Mantoglou, A. "Digital simulation of multivariate two-and three-dimensional stochastic processes with a spectral turning bands method". Mathematical Geology, 19 (2), 129-149. 1987.
[80] Tompson, A. F., R. Ababou, and L. W. Gelhar. "Implementation of the three‐dimensional turning bands random field generator". Water Resources Research, 25 (10), 2227-2243. 1989.
[81] Mantoglou, A., and J. L. Wilson. "The turning bands method for simulation of random fields using line generation by a spectral method". Water Resources Research, 18 (5), 1379-1394. 1982.
[82] Mejía, J. M., and I. Rodríguez‐Iturbe. "On the synthesis of random field sampling from the spectrum: An application to the generation of hydrologic spatial processes". Water Resources Research, 10 (4), 705-711. 1974.
[83] Riihijarvi, J., P. Mahonen, M. Wellens, and M. Gordziel. "Characterization and modelling of spectrum for dynamic spectrum access with spatial statistics and random fields". 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 1-6. 2008.
[84] Li, D.-Q., T. Xiao, L.-M. Zhang, and Z.-J. Cao. "Stepwise covariance matrix decomposition for efficient simulation of multivariate large-scale three-dimensional random fields". Applied Mathematical Modelling, 68, 169-181. 2019.
[85] Gneiting, T., W. Kleiber, and M. Schlather. "Matérn cross-covariance functions for multivariate random fields". Journal of the American Statistical Association, 105 (491), 1167-1177. 2010.
[86] Hicks, P. J. "Unconditional sequential Gaussian simulation for 3-D flow in a heterogeneous core". Journal of Petroleum Science and Engineering, 16 (4), 209-219. 1996.
[87] Matheron, G. "The theory of regionalised variables and its applications". Les Cahiers du Centre de Morphologie Mathématique, 5, 212. 1971.
[88] Goovaerts, P. "Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall". Journal of Hydrology, 228 (1-2), 113-129. 2000.
[89] Haberlandt, U. "Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event". Journal of Hydrology, 332 (1-2), 144-157. 2007.
[90] Piotrowski, J., F. Bartels, A. Salski, and G. Schmidt. "Geostatistical regionalization of glacial aquitard thickness in northwestern Germany, based on fuzzy kriging". Mathematical Geology, 28 (4), 437-452. 1996.
[91] Gong, G., S. Mattevada, and S. E. O’Bryant. "Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas". Environmental Research, 130, 59-69. 2014.
[92] Cressie, N. "The origins of kriging". Mathematical Geology, 22 (3), 239-252. 1990.
[93] Chiles, J.-P., and P. Delfiner. Geostatistics: modeling spatial uncertainty. John Wiley & Sons. 2009.
[94] Deutsch, C. V., and A. G. Journel. "GSLIB Geostatistical Software Library and User’s Guide, second edition". New York. 1997.
[95] Gribov, A., and K. Krivoruchko. "Geostatistical mapping with continuous moving neighborhood". Mathematical Geology, 36 (2), 267-281. 2004.
[96] Wang, S., and K. Hsu. "Stochastic analysis of thermal-hydraulic-mechanical modeling for buffer material in nuclear waste repository". Poromechanics VI - Proceedings of the 6th Biot Conference on Poromechanics, 787-794. 2017.
[97] 台灣電力公司,(2009),我國用過核子燃料最終處置初步技術可行性評估報告SNFD2009報告。
[98] Cheng, A.-D. "Investigation of flow and soulte transport at the field scale through heterogeneous deformable porous media". Journal Hydrology, 540, 142-147. 2016.
[99] Pan, P.-Z., F. Yan, X.-T. Feng, and Z.-H. Wu. "Study on coupled thermo-hydro-mechanical processes in column bentonite test". Environmental Earth Sciences, 76 (17), 1-17. 2017.
[100] Garitte, B., H. Shao, X. Wang, T. Nguyen, Z. Li, J. Rutqvist, J. Birkholzer, W. Wang, O. Kolditz, and P. Pan. "Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory". Environmental Earth Sciences, 76 (2), 64. 2017.
[101] Cho, W.-J., and S. Kwon. "Estimation of the thermal properties for partially saturated granite". Engineering Geology, 115 (1-2), 132-138. 2010.
[102] Kuck, D. L. Structure of Computers and Computations. John Wiley & Sons, Inc., 1978.
[103] O′Regan, G. A brief history of computing. Springer Science & Business Media. 2008.
[104] Marr, D. T., F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton. "Hyper-Threading Technology Architecture and Microarchitecture". Intel Technology Journal, 6 (1), 2002.
[105] Gordon, M. I., W. Thies, and S. Amarasinghe. "Exploiting coarse-grained task, data, and pipeline parallelism in stream programs". ACM SIGPLAN Notices, 41 (11), 151-162. 2006.
[106] Schenk, O., K. Gärtner, W. Fichtner, and A. Stricker. "PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation". Future Generation Computer Systems, 18 (1), 69-78. 2001.
[107] Liu, J. W. "The multifrontal method for sparse matrix solution: Theory and practice". SIAM Review, 34 (1), 82-109. 1992.
[108] Amestoy, P. R., I. S. Duff, and J.-Y. L′excellent. "Multifrontal parallel distributed symmetric and unsymmetric solvers". Computer Methods in Applied Mechanics and Engineering, 184 (2-4), 501-520. 2000.
[109] Kulkarni, M., M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. "How much parallelism is there in irregular applications?". ACM Sigplan Notices, 44 (4), 3-14. 2009.
[110] COMSOL and Mulitthreading. (https://www.comsol.com/search/?t=1&subset=support_knowledge_base&s=multithreading).
[111] Pass Mark SOFTWARE-CPU Benchmarks. (https://www.cpubenchmark.net/).
[112] Prechelt, L. "An empirical comparison of c, c++, java, perl, python, rexx and tcl". IEEE Computer, 33 (10), 23-29. 2000.
[113] Lam, S. K., A. Pitrou, and S. Seibert. "Numba: A llvm-based python jit compiler". Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, 1-6. 2015.
[114] ipyparallel. (https://ipyparallel.readthedocs.io/en/latest/index.html). |