參考文獻 |
[1] 陳懿,陳羿貞,「比較傳統口外錨定與迷你植體錨定於成年患者上顎齒槽前突之矯正治療結果」,碩士論文,國立台灣大學,民國95年。
[2] http://www.pittortho.com.tw/service_ortho15.htm
[3] https://blog.xuite.net/drsuortho/twblog/153703089
[4] https://blog.xuite.net/drsuortho/twblog/153703160
[5] http://www.kmuh.org.tw/www/kmcj/data/10807/14.htm
[6] https://www.allaboutsmilesortho.com/headgear/
[7] 伍紹鈞,「人工髖關節有限元素分析之整合介面開發」,中華大學,碩士論文,民國93年。
[8] 余欣儒,「有限元素法評估之新設計之頸部模組化股骨柄」,國立台北科技大學,碩士論文,民國104年。
[9] 陳雲玉,「有限元素法評估之新設計之頸部模組化股骨柄」,國立台灣科技大學,碩士論文,民國104年。
[10] 張筱偉,「逆行骨釘與鎖定骨板治療近人工膝關節骨折之有限元素比較」,國立交通大學,碩士論文,民國99年。
[11] 王俊翔,「顳顎關節盤之生物力學探討:三圍有限元素法分析」,國立成功大學,碩士論文,民國101年。
[12] 張弘學,「有限元素法評估之新設計之頸部模組化股骨柄」,國立陽明大學,碩士論文,民國94年。
[13] 蔡育銓,「腳踝矯形支架之有限元素分析與設計」,國立成功大學,碩士論文,民國98年。
[14] 魏妙俶,「血管支架之有限元素分析與設計」,國立成功大學,碩士論文,民國94年。
[15] 陳怡龍,「中空型骨釘及側孔型骨鬆用椎根骨釘的力學行為分析」,國立陽明大學,碩士論文,民國105年。
[16] 蕭文田,「牙周病菌於人工牙根之生物力學與心血管支架之血液流體動力學之整合性研究」,台北醫學大學,博士論文,民國104年。
[17] 陳筆人,「三維有限元素法模擬微牙根植體在上顎骨靠近牙齒根部所產生靜態與動態應力分布行為之研究」,國立虎尾科技大學,碩士論文,民國101年。
[18] 黃振棠,「人工牙根與之台齒之最佳化疲勞分析」,國立高雄科技大學,碩士論文,民國108年。
[19] 陳柏宏,「鈦合金(Ti6Al4V)與不鏽鋼(Stainless 316L)自鑽型矯正釘應用於牙齒矯正效能分析之研究」,國立高雄應用科技大學,碩士論文,民國101年。
[20] 廖炯琳,「迷你骨釘錨定用於雙顎前途患者之治療結果:各種骨釘錨定設置之比較」,長庚大學,碩士論文,民國98年。
[21] 葉俊杰,「齒顎矯正錨定骨釘之設計」,國立台北科技大學,碩士論文,民國97年。
[22] A. P. Bozkurt, “Effects of mechanical vibration on miniscrew implants and bone: FEM analysis,” International Orthodontics, Vol. 17, pp. 38–44, Mar. 2019.
[23] O. P. Kharbanda, N. Bhatnagar, V. D. Samrit, A. Kumar, S. Yadav, S. Anand, “Geometrical effects of orthodontic miniscrew implants and resulting distortion stresses in a simulated bone model for different applied forces: An FEM study,” ResearchGate, Jan. 2020.
[24] S. Singh, S. Mogra, V. S. Shetty, S. Shetty, and P. Philip, “Three-dimensional finite element analysis of strength, stability, and stress distribution in orthodontic anchorage: A conical, self-drilling miniscrew implant system,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 141, Iss. 3, Pages 327-336, Mar. 2012.
[25] M. C. Castaño, U. Zapata, A. Pedroza, J. D. Jaramillo, S. Roldán, “Creation of a three-dimensional model of the mandible and the TMJ in vivo by means of the finite element method,” International Journal of Computerized Dentistry, Vol. 5, Iss. 2-3, pp. 87-99, 2002.
[26] U. Wolfram, J. Schwiedrzik, “Post-yield and failure properties of cortical bone,” BoneKEy Reports 5, Article number: 829, 2016.
[27] C. Teekavanich, M. Uezono, K. Takakuda, T. Ogasawara , P. Techalertpaisarn and K. Moriyama , “Evaluation of cortical bone microdamage and primary stability of orthodontic miniscrew using a human bone analogue,” Materials 2021, Vol. 14(8), 1825, February 2021.
[28] C.-L. Lin, J.-H. Yu, H.-L. Liu, C.-H. Lin, Y.-S. Lin, “Evaluation of contributions of orthodontic mini-screw design factors based on FE analysis and the Taguchi method,” Journal of Biomechanics, Vol. 43, pp. 2174–2181, Mar. 2010.
[29] A. H. S. Haghighi , V. Pouyafar , A. Navid, M. Eskandarinezhad , T. Abdollahzadeh Baghaei , “Investigation of the optimal design of orthodontic mini-implants based on the primary stability: A finite element analysis,” Journal of Dental Research, Dental Clinics, Dental Prospects, Spring 2019, Vol. 13, Iss. 2, pp. 85-89, Aug. 2019.
[30] M. Motoyoshi, M. Inaba, A. Ono, S. Ueno, N. Shimizu, “The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone,” International Journal of Oral and Maxillofacial Surgery, Surg. 2009, Vol. 38, pp. 13–18, Sept. 2008.
[31] A. Suzuki, T. Masuda, I. Takahashi, T. Deguchi, O. Suzuki, T. T. Yamamoto, “Changes in stress distribution of orthodontic miniscrews and surrounding bone evaluated by 3-dimensional finite element analysis,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 140, Iss. 6, pp. e273-80, Dec. 2011.
[32] M. Cozzani, L. Nucci, D. Lupini, H. Dolatshahizand, D. Fazeli, E. Barzkar, E. Naeini, A. Jamilian, “The ideal insertion angle after immediate loading in Jeil, Storm, and Thunder miniscrews: A 3D-FEM study,” International Orthodontics 2020, Vol. 18, pp. 503–508, May 2020.
[33] A. N. Omar, S. S. Marwa, H. M. Shaza, “Effect of cortical bone thickness, insertion angle and force direction variations on miniscrew and surrounding bone: A finite element study,” IOSR Journal of Dental and Medical Sciences, e-ISSN: 2279-0853, p-ISSN: 2279-0861, Vol. 18, Iss. 11 Ser.9, pp 22-29, Nov. 2019.
[34] L. Zhao, Z. Xu, X. Wei, L. Zhang, J. Li, T. Tang, “Effect of placement angle on the stability of loaded titanium microscrews: A microcomputed tomographic and biomechanical analysis,” Original Article Vol. 139, Iss. 5, pp. 628-635, May 2011.
[35] T.-C. Liu , C.-H. Chang, T.-Y. Wong, J.-K. Liu, “Finite element analysis of miniscrew implants used for orthodontic anchorage,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 141, Iss. 4, pp. 468-76, Apr. 2012.
[36] S.-H. Cho, S.-J. Kim, K.-J. Lee, S.-J. Sung, Y.-S. Chun, C.-J. Hwang, “Stress distributions in peri-miniscrew areas from cylindrical and tapered miniscrews inserted at different angles,” Korean Journal of Orthodontics, Vol. 46, Iss. 4, pp. 189-98, July 2016.
[37] R. Duaibis, B. Kusnoto, R. Natarajan, L. Zhao, C. Evans, “Factors affecting stresses in cortical bone around miniscrew implants: A three-dimensional finite element study,” The Angle Orthodontist, Vol. 82, Iss. 5, pp. 875-80, Sept. 2012.
[38] N. Woodall, S. C. Tadepalli, F. Qian, N. M. Grosland, S. D. Marshall, and T. E. Southard, “Effect of miniscrew angulation on anchorage resistance,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 139, pp. e147-e152, Mar. 2011.
[39] F. M. Dastenaei, A. Hajarian, O. Zargar, M. M. Zand, S. Noorollahian, “Effects of thread shape on strength and stability of dental miniscrews against orthodontic forces,” Procedia Manufacturing, Vol. 35, pp. 1032–1038, 2019.
[40] L. Perillo, A. Jamilian, A. Shafieyoon, H. Karimi ,M. Cozzani, “Finite element analysis of miniscrew placement in mandibular alveolar bone with varied angulations,” European Journal of Orthodontics, pp. 56–59, 2015.
[41] G. Zhou, X. Zhang, H. Qie, C. Li, L. Lu, L. Shan, “Three-dimensional finite element analysis of the stability of mini-implants close to the roots of adjacent teeth upon application of bite force,” Dental Materials Journal 2018, Vol. 37, Iss. 5, pp. 851–857, 2018.
[42] X. N. Dong , Q. Luo , Xi. Wang, “Progressive post-yield behavior of human cortical bone in shear,” Bone, Vol. 53, Iss. 1, pp. 1-5, Mar. 2013.
[43] T.-V. Do, Q.-C. Hsu, P.-H. Chen, Y.-L. Chen, “Study on the performance of orthodontic self-drilling correction screw of Ti6Al4V and Stainless 316L,” Materials Science Forum, ISSN: 1662-9752, Vol. 872, pp. 276-280, June 2016.
[44] Y.-S. Lin, J.-. Yu, Y.-Z. Chang, C.-L. Lin, , “Biomechanical evaluation of an orthodontic miniimplant used with revolving (translation and rotation) temporary anchorage device by finite element analysis and experimental testing,” Implant Dentistry, Vol. 22, Iss. 1, pp. 77-82, Feb. 2013.
[45] S. E. Barros, G. Janson, K. Chiqueto, D. G. Garib, M. Janson, “Effect of mini-implant diameter on fracture risk and self-drilling efficacy,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 140(4), pp. e181-92, Oct. 2011.
[46] M. Araghbidikashani, A. Golshah, N. Nikkerdar, M, Rezaei, “In-vitro impact of insertion angle on primary stability of miniscrews,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 150, Iss. 3, pp. 436-443, Sept. 2016.
[47] J. H. Yu, Y. S. Lin, W. J. Chang, Y. Z. Chang, C. L. Lin, “Mechanical effects of micro thread orthodontic mini screw design on artificial cortical bone,” Journal of Medical and Biological Engineering, Vol. 34, Iss. 1, pp. 49-55, 2012.
[48] J.-H. Yu, Y.-T. Wang and C.-L. Lin, “Customized surgical template fabrication under biomechanical consideration by integrating CBCT image, CAD system and finite element analysis,” Dental Materials Journal, Vol. 37, Iss. 1, pp. 6-14, 2018.
[49] “Standard specification and test methods for metallic medical bone screws,” F543–17, American National Standards Institute, 2017.
[50] https://zh.wikipedia.org/wiki/%E5%89%9B%E5%BA%A6
[51] https://www.ulbrich.com/alloys/316lvm-stainless-steel-uns-s31673/
[52] C. Dissaux, D. Wagner, D. George, C. Spingarn, Y. Remond, “Mechanical impairment on alveolar bone graft: a literature review,” Journal of Cranio-Maxillo-Facial Surgery, Vol. 47, Iss. 1, pp. 149-157, 2019.
[53] X. Ding, S.-H. Liao, X.-H. Zhu, H.-M. Wang, B.-J. Zou, “Effect of orthotropic material on finite element modeling of completely dentate mandible,” Materials and Design, Vol. 84, pp. 144-153, 2015. |