博碩士論文 108323056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.188.137.58
姓名 陳溥(Pu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 300mm矽晶圓批量清洗之數值模擬分析
(Numerical Analysis of 300mm Wafer Batch Cleaning)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 矽晶圓批量清洗中清洗槽內的流體流動情形極為重要,流體的流動情形影響了矽晶圓的潔淨度,矽晶圓潔淨度也影響了後續製程以及產品最後的良率,故為了瞭解清洗槽內流體流動情形,建立數值模型,透過數值模型深入探討,並嘗試最佳化清洗槽。
關於顆粒附著在晶圓表面上的去除機理較少文獻探討,因此本研究首先詳細解釋顆粒吸附在晶圓表面上所有的力,以及如何利用流體去除顆粒,再提出一種新穎的驗證模擬有效性的方法,此方法是透過顆粒去除機理分別計算矽顆粒(Si)與二氧化矽顆粒(SiO2)剪應力理論值3.190×〖10〗^(-3) Pa與6.387×〖10〗^(-4) Pa,再搭配現有的顆粒殘留分布與模擬結果的晶圓表面剪應力做比對,確定該數值模型的有效性,接著詳細探討清洗槽內流體流動情形,並詳加說明,再透過此模型進行流量改變以及幾何的改變,透過上述研究確立了,改變清洗槽部件的幾何是一種有效最佳化清洗槽內流動的方式。
摘要(英) In the batch cleaning of silicon wafers, the fluid flow in the cleaning tank is important. It affects the cleanliness of the silicon wafer, the subsequent production process, and the final product yield. In order to analyze the fluid flow in the cleaning tank, we build a numerical model to investigate in depth, and try to optimize the cleaning tank.
There is a lack of information about removal mechanism of particles attached to the wafer surface. Therefore, this study first explains all the forces of particle attached on wafer surface, and how to remove particles by fluid flow. And then proposes a novel method to verify the effectiveness of the simulation. It aims to calculate the theoretical value of the shear stress through the particle removal mechanism. Next, we compare that with the existing particle residual distribution and the simulation result of the wafer surface shear stress, to determine the validity of the numerical model. After that, we discuss fluid flow situation in the cleaning tank and give a detailed explanation. Finally, we change the flow rate and geometry in this model to figure out which way is benefit for batch cleaning. By altering different parameters mentioned above, we conclude that changing the geometry of the cleaning tank components is an effective way to optimize the cleaning efficiency.
關鍵字(中) ★ 批量清洗
★ 晶圓清洗槽
★ 顆粒
關鍵字(英) ★ batch cleaning
★ wafer rising tank
★ particle
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
符號說明 XI
第一章 緒論 1
1-1研究背景 1
1-2顆粒附著效應 3
1-2-1范德瓦力(van der Waals Force) 3
1-2-2靜電力 4
1-3流體去除效應 5
1-4文獻回顧 7
1-5研究動機與目的 8
第二章 研究方法 13
2-1模型幾何 13
2-1-1物理系統與基本假設 13
2-1-2統御方程式 14
2-1-3邊界條件 15
第三章 數值方法 19
3-1 有限元素法 19
3-2 網格配置與測試 19
3-3 收斂誤差測試 20
第四章 結果與討論 23
4-1顆粒附著情形與討論 23
4-1-1范德瓦力 23
4-1-2靜電力 25
4-1-3水去除力 27
4-2清洗槽流動情形 30
4-2-1清洗槽內渦漩 31
4-3增加流量 31
4-4增加孔 32
4-5改變出水口幾何 33
4-6減少清洗晶圓片數 33
第五章 結論與未來研究方向 52
5-1結論 52
5-2未來方向 53
參考文獻 55
參考文獻 [1] H.C.Hamaker, Van Der Waals attraction between spherical particles, Physica, Physica,4(10),1058-1072(1973).
[2]Changkun Li, Dewen Zhao, Lile Xie, Xinchun Lu, Mechanism Analysis of Nanoparticle Removal Induced by the Marangoni-driven Flow in Post-CMP Cleaning,ESC,9(2),(2020).
[3]A.R.Karen, K. Werner, Silicon Wafer Cleaning Technology, (2018).
[4]G.M. Burdick, N.S. Berman, S.P.Beaudoin, Hydrodynamic particle removal from surfaces, Nanoparticle Research 488,453-465(2001).
[5]J.C.J.Van der Donck, M.L Zoeteweij, R.Versluis, Particle Removal in Linear Shear Flow: Model Prediction and Experimental Validation, Adhesion Science and Technology,23(6),899-911(2009).
[6] Kuide Qin, Yongcheng Li, Mechanisms of particle removal from silicon wafer surface in wetchemical cleaning process, Colloid and Interface Science, 261(2) ,569-574(2003).
[7] A. Moldovan, B. Mandlmeier, C. Müller, L. Zimmer, M. Menschick, Fluid Dynamic Modeling of an Industrial Wet Chemical Process Bath for the Production of Silicon Solar Cells, COMSOL(2017).
[8] Hitoshi Habuka, Masahiko Aihara, Masayuki Kato, Shinji Kobayashi, Takashi Takeuchi, Water Motion in Carrierless Wet Station,The Electrochemical Society,151(12),G814(2004).
[9] Bivas Panigrahi, Chia-Yuan Chen, Kok-Shen Chong, Tsung-Yi Lu, Wei-Hsien Li, Yi-Li Liu, Hydrodynamic Investigation of a Wafer Rinse Process Through Numerical Modeling and Flow Visualization Methods, Fluids Engineering,140,1-8(2018).
[10] Akihiro Goto, Hitoshi Habuka, Kento Miyazaki, Miya Matsuo, Water Outlet Design of Wet Cleaning Bath for 300-mm Diameter Silicon Wafers, ECS,7(9), N123-N127(2018).
[11] Kuide Qin, Yongcheng Li, Mechanisms of particle removal from silicon wafer surface in wet chemical cleaning process, Colloid and Interface Science,261(2),569-574(2003).
[12] R. G. Cox, A. J. Brenner, Slow viscous motion of a sphere parallel to a plane wall-I Motion through a quiescent fluid, Chemical Engineering Science,22(4),637-651(1967).
[13] M. E.O′Neill, A sphere in contact with a plane wall in a slow linear shear flow, Chemical Engineering Science,23(11),1293-1298(1968).
[14] J. Visser, The Adhesion of Colloidal Polystyrene Particles to Cellophane as a Function of pH and Ionic Strength, Colloid and Interface Science, 55(3),664-677(1976).
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2021-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明