博碩士論文 108624010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.147.8.145
姓名 秦淑娟(Shu-Chaun Chin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 實驗室尺度異質性含水層之地下水熱傳輸試驗與模式分析
(Experimental and numerical analysis of groundwater heat transport in a lab-scale heterogeneous aquifer)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 與化學示踪劑相比,溫度作為示踪劑除了可反映地下水流及熱傳輸的動態過程,還可以減少對環境的負面影響。為增進以溫度示踪劑推估含水層內水流及溫度傳遞行為之精確度,本研究通過建立異質性環境的砂箱來進行注水試驗,並以HYDRUS-2D數值模式進行模擬,其中模擬項目包含水溫、水流及熱傳輸的過程。數值模擬需材料的土壤特徵參數及熱性質參數,透過室內實驗取得,相關參數包含飽和水力傳導係數、非飽和土壤van Genuchten特徵曲線、熱導率及容積熱容等。砂箱試驗於室內恆溫環境下進行,砂箱長155公分、寬2公分、高55公分,砂箱左右各有一水槽調節水位,使左右邊界皆為定水頭,用蠕動馬達以定流量持續以單點注水方式注熱水5小時,觀察並量測相對高溫水注入相對低溫水中的熱傳輸動態歷程。試驗顯示在砂箱下半部的飽和區溫度受到熱水影響較為顯著,越接近注水點溫度上升越快,溫度達峰值時間越短,停止注水後溫度下降越快,並且最快降為室溫。數值模擬結果案例一能大致模擬砂箱注水情況,案例二模擬與試驗結果誤差較大。應用模型進行注水溫度與注入流量對熱傳輸距離影響測試時,在注入水溫與環境溫度溫較接近時,增加溫度的熱傳輸距離增幅較大,隨著注水溫度越大,距離增幅程度降低,表示一定程度升溫是有助於增加傳輸距離,但增溫的效果有限,效益會逐漸減小。
摘要(英) Heat is one of tracers that can reflect groundwater flow and heat transport. Using temperature as a natural tracer, compared with chemical tracer, reduces negative impacts on the environment. In order to improve the accuracy of estimating the water flow and temperature transfer behavior in aquifers, this study employs experimental approaches and HYDRUS-2D numerical model to analyze the water temperature, water flow and heat transport. Laboratory experiments are also considered in this study to get sandbox material parameters that include hydraulic conductivity, van Genuchten parameter, thermal conductivity and volumetric heat capacity. The sandbox was placed at a constant temperature environment, which is 155 cm in length, 2 cm in width, and 55 cm in height. There are tanks on both left and right sides of the sandbox to control the water level. The hot water was injected into the sandbox by a single point with constant injection rate for 5 hours, and the dynamic process of heat transport was measured during the experiment. Experiments show that the temperature of the lower half of the sandbox is more significantly affected by hot water. The closer to the water injection point, the faster the temperature rise and the shorter the time to reach the temperature peak. After the water injection is stopped, the temperature drops quickly, and it drops to room temperature the fastest. The numerical simulation result of Case 1 can roughly simulate the water injection situation of the sand box, and the simulation and test results of Case 2 have large errors. When the model is used to test the influence of injection temperature and injection flow rate on the heat transfer distance, when the injected water temperature is close to the ambient temperature, the heat transfer distance increases as the temperature increases. As the water injection temperature increases, the increase in distance decreases. It means that a certain degree of temperature rise will help increase the transmission distance, but the effect of temperature rise is limited, and the benefits will
gradually decrease.
關鍵字(中) ★ 異質性含水層
★ 溫度示蹤劑
★ 熱傳輸
★ 砂箱試驗
★ HYDRUS-2D
關鍵字(英) ★ Heterogeneous aquifer
★ Heat tracer
★ Heat transport
★ Sandbox experiment
★ HYDRUS-2D
論文目次 摘要 i
Abstract ii
目錄 v
圖目錄 viii
表目錄 xiii
符號說明 xv
第一章 緒論 1
1-1 背景與動機 1
1-2 研究目的 2
1-3 文獻回顧 2
1-3-1 示蹤劑 2
1-3-2 地下水偵溫方法 5
1-3-3 數值模式分析地下水溫度 7
1-4 研究流程 7
第二章 研究方法 9
2-1 落水頭試驗(Falling-head test) 9
2-2 壓力鍋試驗(Pressure plate test) 10
2-3 熱性質試驗(Thermal property test) 12
2-4 砂箱注水試驗 14
2-4-1 分佈式光纖偵溫系統原理 14
2-4-2 砂箱介紹 15
2-4-3 砂箱材料 18
2-4-4 試驗設置 19
2-5 數值模式 HYDRUS-2D 23
2-5-1 控制方程式 23
2-5-2 初始條件 26
2-5-3 邊界條件 26
2-5-4 模型建置流程 27
2-5-5 敏感度分析 29
2-6 統計誤差 30
第三章 結果與討論 31
3-1 室內試驗結果 31
3-1-1 落水頭試驗 31
3-1-2 壓力鍋試驗 33
3-1-3 熱性質試驗 35
3-1-4 砂箱注水試驗 40
3-3 數值模式 HYDRUS-2D 57
3-3-1 敏感度分析 57
3-3-2 建模設定 70
3-3-3 穩態模型條件設定 72
3-3-4 注水模型條件設定 74
3-3-5 水力特徵參數率定 75
3-3-6 熱參數率定 79
3-3-7 溫度模擬結果 80
3-4 模擬與試驗結果分析 87
3-5 熱傳輸距離測試 99
第四章 結論與建議 102
4.1 結論 102
4.2 建議 103
參考資料 104
附錄一 111
附錄二 116
附錄三 117
附錄四 118
附錄五 121
參考文獻 [1] Stonestrom, D.A.; Constantz, J. Heat as a tool for studying the movement of ground water near streams; US Department of the Interior, US Geological Survey: Virginia, US, 2003.
[2] Davis, S.N.; Thompson, G.M.; Bentley, H.W.; Stiles, G. Ground-Water Tracers - A Short Review. Ground Water 1980, 18, 14-23.
[3] Datta, P.S.; Bhattacharya, S.K.; Tyagi, S.K. 18O studies on recharge of phreatic aquifers and groundwater flow-paths of mixing in the Delhi area. Journal of Hydrology 1996, 176, 25-36.
[4] Caissie, D.; Pollock, T.L.; Cunjak, R.A. Variation in stream water chemistry and hydrograph separation in a small drainage basin. Journal of Hydrology 1996, 178, 137-157.
[5] 刘安建. 油田微量物质井间示踪测试技术. CN1166964C, 2004.
[6] McCarthy, K.A.; McFarland, W.D.; Wilkinson, J.M.; White, L.D. The dynamic relationship between ground water and the Columbia River: using deuterium and oxygen-18 as tracers. Journal of Hydrology 1992, 135, 1-12.
[7] Ellins, K.K.; Roman-Mas, A.; Lee, R. Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico. Journal of Hydrology 1990, 115, 319-341.
[8] Cook, P.G.; Favreau, G.; Dighton, J.C.; Tickell, S. Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology 2003, 277, 74-88.
[9] Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J. Estimation of Hydraulic Conductivity in an Alluvial System Using Temperatures. Ground Water 2004, 42, 890-901.
[10] Anderson, M.P. Heat as a ground water tracer. Ground Water 2005, 43, 951-968.
[11] Lapham, W.W. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity; 2337; 1989.
[12] Silliman, S.E.; Booth, D.F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. Journal of Hydrology 1993, 146, 131-148.
[13] Constantz, J.; Thomas, C.L. The Use of Streambed Temperature Profiles to Estimate the Depth, Duration, and Rate of Percolation Beneath Arroyos. Water Resources Research 1996, 32, 3597-3602.
[14] Constantz, J.; Stewart, A.E.; Niswonger, R.; Sarma, L. Analysis of temperature profiles for investigating stream losses beneath ephemeral channels. Water Resources Research 2002, 38, 52-51-52-13.
[15] Klepikova, M.; Wildemeersch, S.; Hermans, T.; Jamin, P.; Orban, P.; Nguyen, F.; Brouyère, S.; Dassargues, A. Heat tracer test in an alluvial aquifer: Field experiment and inverse modelling. Journal of Hydrology 2016, 540, 812-823.
[16] Stauffer, F.; Bayer, P.; Blum, P.; Giraldo, N.M.; Kinzelbach, W. Thermal use of shallow groundwater; CRC Press: Florida, US, 2019.
[17] Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: New Jersey, 1979.
[18] Irvine, D.J.; Simmons, C.T.; Werner, A.D.; Graf, T. Heat and Solute Tracers: How Do They Compare in Heterogeneous Aquifers? Groundwater 2015, 53, 10-20.
[19] 周柏儀; 許世孟; 蔡美雯; 呂昱達; 俞旗文; 陳文山. 光纖光柵井下地溫感測系統之開發與實測. 岩盤工程研討會, 台中市, 台灣, 2014年10月23日.
[20] 合立儀器股份有限公司. 美國 in-situ. http://www.startech-co.com.tw/zh-tw/product-427212/%E6%B0%B4%E8%B3%AA%E7%9B%A3%E6%B8%AC%E5%84%80%E5%99%A8-Aqua-TROLL-200.html.
[21] 陳文福. 高雄地區地溫之量測與研究; 2016.
[22] SiLiXA. XT-DTSTM. https://silixa.com/technology/xt-dts/.
[23] Hurtig, E.; Großwig, S.; Jobmann, M.; Kühn, K.; Marschall, P. Fibre-optic temperature measurements in shallow boreholes: experimental application for fluid logging. Geothermics 1994, 23, 355-364.
[24] Sakaguchi, K.; Matsushima, N. Temperature logging by the distributed temperature sensing technique during injection tests. Proceedings World Geothermal Congress, Kyushu, Japan, 5/28~6/10, 2000; pp. 1657-1661.
[25] Long, A. Improving the economics of geothermal development through an oil and gas industry approach; 2009.
[26] Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental temperature sensing using Raman spectra DTS fiber-optic methods. Water Resources Research 2009, 45.
[27] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Recent Developments and Applications of the HYDRUS Computer Software Packages. Vadose Zone Journal 2016, 15, 1-25.
[28] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and Applications of the HYDRUS and STANMOD Software Packages and Related Codes. Vadose Zone Journal 2008, 7, 587-600.
[29] Yadav, B.; Krishnan, P.; Shafeeq, P.M.; Parihar, C.M.; Aggarwal, P. Modelling soil thermal regime in wheat using HYDRUS-2D under diversified maize-wheat-mungbean cropping system. CATENA 2020, 194, 104765.
[30] Wang, J.; Gong, S.; Xu, D.; Juan, S.; Mu, J. Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS-2D. Irrigation and Drainage 2013, 62, 97-106.
[31] Brunetti, G.; Porti, M.; Piro, P. Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate. Applied Energy 2018, 221, 204-219.
[32] Antonov, D.; Mallants, D.; Simunek, J.J.; Karastanev, D. Application of the HYDRUS (2D/3D) Inverse Solution Module for Estimating the Soil Hydraulic Parameters of a Quaternary Complex in Northern Bulgaria; PC-Progress: Prague, Czech Republic, 2013.
[33] Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research 1976, 12, 513-522.
[34] METER. TEMPOS. http://publications.metergroup.com/Manuals/20645%20TEMPOS_Manual_Web.pdf.
[35] Abramowitz, M.; Stegun, I.A. Handbook of mathematical functions with formulas, graphs, and mathematical tables; Martino Publishing: Mansfield Centre, 2014.
[36] Ren, J.; Wang, X.; Shen, Z.; Zhao, J.; Yang, J.; Ye, M.; Zhou, Y.; Wang, Z. Heat tracer test in a riparian zone: Laboratory experiments and numerical modelling. Journal of Hydrology 2018, 563, 560-575.
[37] 大翰科技股份有限公司. 分散式溫度感測光纖DTS. http://www.mpi-tech.com.tw/news_info.php?id=154.
[38] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, Technical Manual, Version 2.0; PC Progress: Prague, Czech Republic, 2012.
[39] Sophocleous, M. Analysis of water and heat flow in unsaturated-saturated porous media. Water Resources Research 1979, 15, 1195-1206.
[40] DeVries, D.A. Thermal Properties of Soils. In Physics of Plant Environment, (Ed.), W.R.v.W., Ed.; North Holland: Amsterdam, 1963; pp. 210-235.
[41] Šimůnek, J.; Suarez, D.L. UNSATCHEM-2D code for simulating two-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium and kinetic chemistry. Version 1.1; 1993.
[42] Chung, S.-O.; Horton, R. Soil heat and water flow with a partial surface mulch. Water Resources Research 1987, 23, 2175-2186.
[43] Ma, R.; Zheng, C. Effects of Density and Viscosity in Modeling Heat as a Groundwater Tracer. Ground Water 2010, 48, 380-389.
[44] Mayer, D.G.; Butler, D.G. Statistical validation. Ecological Modelling 1993, 68, 21-32.
[45] Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis, Klute, A., Ed.; Madison: Wisconsin, US, 1986; pp. 383-411.
[46] 涂展台. 茶園不同水土保持處理下土壤水份特性曲線之量測. 國立中興大學, 台中市, 1999.
[47] Carsel, R.F.; Parrish, R.S. Developing joint probability distributions of soil water retention characteristics. Water Resources Research 1988, 24, 755-769.
[48] Ghuman, B.; Lal, R. Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Science 1985, 139, 74-80.
[49] Yadav, M.R.; Saxena, G.S. Effect of Compaction and Moisture Content on Specific Heat and Thermal Capacity of Soils. Journal of the Indian Society of Soil Science 1973, 21, 129-132.
[50] Bristow, K.L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology 1998, 89, 75-84.
[51] Abu-Hamdeh, N.H. Thermal Properties of Soils as affected by Density and Water Content. Biosystems engineering 2003, 86, 97-102.
[52] Lallemand-Barres; Peaudecerf. Bureau de Recherches Géologiques et Miniéres; 1978.
[53] Pfannkuch, H.O. Contribution a Ietude des deplacement de fluids miscible dans un milieu poreux. Revue de l′Institut Francais du Petrole 1962, 18, 215-270.
[54] Šimůnek, J.; van Genuchten, M.T.; Šejna, M. The HYDRUS Software Package for Simulating Two- and Three Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Porous Media, User Manual, Version 3.0; PC Progress: Prague, Czech Republic, 2018.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2021-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明