參考文獻 |
1. Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., &Chang, S. Y. (2004). Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299–303. https://doi.org/10.1002/adem.200300567
2. Cantor, B., Chang, I. T. H., Knight, P., &Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A, 375–377(1-2 SPEC. ISS.), 213–218. https://doi.org/10.1016/j.msea.2003.10.257
3. Miracle, D., & Senkov, O. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
4. Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., &Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. In Progress in Materials Science (Vol. 61, pp. 1–93). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2013.10.001
5. Maulik, O., Kumar, D., Kumar, S., Dewangan, S. K., &Kumar, V. (2018). Structure and properties of lightweight high entropy alloys: A brief review. In Materials Research Express (Vol. 5, Issue 5). Institute of Physics Publishing. https://doi.org/10.1088/2053-1591/aabbca
6. Feng, R., Gao, M. C., Lee, C., Mathes, M., Zuo, T., Chen, S., Hawk, J. A., Zhang, Y., &Liaw, P. K. (2016). Design of light-weight high-entropy alloys. Entropy, 18(9), 16–29. https://doi.org/10.3390/e18090333
7. Qiu, Y., Hu, Y. J., Taylor, A., Styles, M. J., Marceau, R. K. W., Ceguerra, A.V., Gibson, M. A., Liu, Z. K., Fraser, H. L., &Birbilis, N. (2017). A lightweight single-phase AlTiVCr compositionally complex alloy. Acta Materialia, 123, 115–124. https://doi.org/10.1016/j.actamat.2016.10.037
8. Stepanov, N. D., Yurchenko, N. Y., Skibin, D.V., Tikhonovsky, M. A., &Salishchev, G. A. (2015). Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. Journal of Alloys and Compounds, 652, 266–280. https://doi.org/10.1016/j.jallcom.2015.08.224
9. Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L., &Koch, C. C. (2014). A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95–99. https://doi.org/10.1080/21663831.2014.985855
10. Yao, M. J., Pradeep, K. G., Tasan, C. C., &Raabe, D. (2014). A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 72–73(February), 5–8. https://doi.org/10.1016/j.scriptamat.2013.09.030
11. Deng, Y., Tasan, C. C., Pradeep, K. G., Springer, H., Kostka, A., &Raabe, D. (2015). Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 94, 124–133. https://doi.org/10.1016/j.actamat.2015.04.014
12. Li, Z., Pradeep, K. G., Deng, Y., Raabe, D., &Tasan, C. C. (2016). Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534(7606), 227–230. https://doi.org/10.1038/nature17981
13. Liang, Y., Wang, L., Wen, Y., Cheng, B., Wu, Q., & Cao, T. et al. (2018). High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-06600-8
14. Li, Z., &Raabe, D. (2017). Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. In JOM (Vol. 69, Issue 11, pp. 2099–2106). Minerals, Metals and Materials Society. https://doi.org/10.1007/s11837-017-2540-2
15. Ranganathan, S. (2003). Alloyed pleasures: Multimetallic cocktails. In CURRENT SCIENCE (Vol. 85, Issue 10).
16. Yeh, J. W., Chen, Y. L., Lin, S. J., &Chen, S. K. (2007). High-entropy alloys - A new era of exploitation. Materials Science Forum, 560, 1–9. https://doi.org/10.4028/www.scientific.net/MSF.560.1
17. Fultz, B. (2010). Vibrational thermodynamics of materials. In Progress in Materials Science. https://doi.org/10.1016/j.pmatsci.2009.05.002
18. Swalin, R. A., &Arents, J. (1962). Thermodynamics of Solids. Journal of The Electrochemical Society. https://doi.org/10.1149/1.2425309
19. Yeh, J. W. (2013). Alloy design strategies and future trends in high-entropy alloys. Jom, 65(12), 1759–1771. https://doi.org/10.1007/s11837-013-0761-6
20. Yeh, J. W. (2006). Recent progress in high-entropy alloys. Annales de Chimie: Science Des Materiaux, 31(6), 633–648. https://doi.org/10.3166/acsm.31.633-648
21. Tsai, K. Y., Tsai, M. H., &Yeh, J. W. (2013). Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Materialia, 61(13), 4887–4897. https://doi.org/10.1016/j.actamat.2013.04.058
22. Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., Zhang, W., &Makino, A. (2013). Entropies in alloy design for high-entropy and bulk glassy alloys. Entropy, 15(9), 3810–3821. https://doi.org/10.3390/e15093810
23. Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., &Liaw, P. K. (2008). Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 10(6), 534–538. https://doi.org/10.1002/adem.200700240
24. Zhang, Y., Yang, X., &Liaw, P. K. (2012). Alloy design and properties optimization of high-entropy alloys. In JOM (Vol. 64, Issue 7, pp. 830–838). https://doi.org/10.1007/s11837-012-0366-5
25. Yang, X., &Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2–3), 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021
26. Guo, S., &Liu, C. T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress in Natural Science: Materials International, 21(6), 433–446. https://doi.org/10.1016/S1002-0071(12)60080-X
27. Schubert, E., Klassen, M., Zerner, I., Walz, C., &Sepold, G. (2001). Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry. Journal of Materials Processing Technology, 115(1), 2–8. https://doi.org/10.1016/S0924-0136(01)00756-7
28. Cheah, L. W., &Heywood, J. B. (2010). Cars on a Diet : The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U . S . Engineering. https://doi.org/http://web.mit.edu/sloan-auto-lab/research/beforeh2/files/LCheah_PhD_thesis_2010.pdf
29. Miller, W. S., Zhuang, L., Bottema, J., Wittebrood, A. J., DeSmet, P., Haszler, A., &Vieregge, A. (2000). Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering A, 280(1), 37–49. https://doi.org/10.1016/S0921-5093(99)00653-X
30. Li, R., Gao, J., &Fa, K. (2010). Study to microstructure and mechanical properties of Mg containing high entropy alloys. Materials Science Forum, 650, 265–271. https://doi.org/10.4028/www.scientific.net/MSF.650.265
31. Li, R., Gao, J. C., &Fan, K. (2011). Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions. Materials Science Forum, 686, 235–241. https://doi.org/10.4028/www.scientific.net/MSF.686.235
32. Senkov, O., Senkova, S., Woodward, C., & Miracle, D. (2013). Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Materialia, 61(5), 1545-1557. https://doi.org/10.1016/j.actamat.2012.11.032
33. Yurchenko, N., Stepanov, N., Shaysultanov, D., Tikhonovsky, M., & Salishchev, G. (2016). Effect of Al content on structure and mechanical properties of the AlxCrNbTiVZr (x=0; 0.25; 0.5; 1) high-entropy alloys. Materials Characterization, 121, 125-134. https://doi.org/10.1016/j.matchar.2016.09.039
34. Senkov, O., Senkova, S., Miracle, D., & Woodward, C. (2013). Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Materials Science And Engineering: A, 565, 51-62. https://doi.org/10.1016/j.msea.2012.12.018
35. Stepanov, N. D., Shaysultanov, D. G., Salishchev, G. A., &Tikhonovsky, M. A. (2015). Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142, 153–155. https://doi.org/10.1016/j.matlet.2014.11.162
36. Feng, R., Gao, M. C., Zhang, C., Guo, W., Poplawsky, J. D., Zhang, F., Hawk, J. A., Neuefeind, J. C., Ren, Y., &Liaw, P. K. (2018). Phase stability and transformation in a light-weight high-entropy alloy. Acta Materialia, 146, 280–293. https://doi.org/10.1016/j.actamat.2017.12.061
37. Maulik, O., &Kumar, V. (2015). Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Materials Characterization, 110, 116–125. https://doi.org/10.1016/j.matchar.2015.10.025
38. Maulik, O., Kumar, D., Kumar, S., Fabijanic, D. M., &Kumar, V. (2016). Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics, 77, 46–56. https://doi.org/10.1016/j.intermet.2016.07.001
39. Du, X. H., Wang, R., Chen, C., Wu, B. L., &Huang, J. C. (2017). Preparation of a light-weight MgCaAlLiCu high-entropy alloy. Key Engineering Materials, 727, 132–135. https://doi.org/10.4028/www.scientific.net/KEM.727.132
40. Tseng, K. K., Yang, Y. C., Juan, C. C., Chin, T. S., Tsai, C. W., &Yeh, J. W. (2018). A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35. Science China Technological Sciences, 61(2), 184–188. https://doi.org/10.1007/s11431-017-9073-0
41. Zepon, G., Leiva, D. R., Strozi, R. B., Bedoch, A., Figueroa, S. J. A., Ishikawa, T. T., &Botta, W. J. (2018). Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy. International Journal of Hydrogen Energy, 43(3), 1702–1708. https://doi.org/10.1016/j.ijhydene.2017.11.106
42. Wang, Y. P., Li, B. S., &Fu, H. Z. (2009). Solid solution or intermetallics in a high-entropy alloy. Advanced Engineering Materials, 11(8), 641–644. https://doi.org/10.1002/adem.200900057
43. Otto, F., Dlouhý, A., Pradeep, K. G., Kuběnová, M., Raabe, D., Eggeler, G., &George, E. P. (2016). Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures. Acta Materialia, 112, 40–52. https://doi.org/10.1016/j.actamat.2016.04.005
44. Tasan, C. C., Deng, Y., Pradeep, K. G., Yao, M. J., Springer, H., &Raabe, D. (2014). Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System. Jom, 66(10), 1993–2001. https://doi.org/10.1007/s11837-014-1133-6
45. Otto, F., Yang, Y., Bei, H., &George, E. P. (2013). Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Materialia, 61(7), 2628–2638. https://doi.org/10.1016/j.actamat.2013.01.042
46. Lei, Z., Liu, X., Wu, Y., Wang, H., Jiang, S., & Wang, S. et al. (2018). Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 563(7732), 546-550. https://doi.org/10.1038/s41586-018-0685-y
47. Praveen, S., &Kim, H. S. (2018). High-Entropy Alloys: Potential Candidates for High-Temperature Applications – An Overview. Advanced Engineering Materials, 20(1). https://doi.org/10.1002/adem.201700645
48. Ren, Y., Zhou, S. M., Xue, Z. Y., Luo, W. B., Ren, Y. J., &Zhang, Y. J. (2017). Effect of α-Platelet Thickness on the Mechanical Properties of Ti-6Al-4V Alloy with Lamellar Microstructure. IOP Conference Series: Materials Science and Engineering, 281(1). https://doi.org/10.1088/1757-899X/281/1/012024
49. Zhang, Z. X., Qu, S. J., Feng, A. H., &Shen, J. (2017). Achieving grain refinement and enhanced mechanical properties in Ti–6Al–4V alloy produced by multidirectional isothermal forging. Materials Science and Engineering A, 692, 127–138. https://doi.org/10.1016/j.msea.2017.03.024
50. Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G., &Lu, Z. P. (2013). Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 68(7), 526–529. https://doi.org/10.1016/j.scriptamat.2012.12.002
51. Wu, D., Zhang, J., Huang, J. C., Bei, H., &Nieh, T. G. (2013). Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals. Scripta Materialia, 68(2), 118–121. https://doi.org/10.1016/j.scriptamat.2012.09.025
52. Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P., &Liaw, P. K. (2010). Refractory high-entropy alloys. Intermetallics, 18(9), 1758–1765. https://doi.org/10.1016/j.intermet.2010.05.014
53. Mohamed, A. M. A., Samuel, A. M., Samuel, F. H., &Doty, H. W. (2009). Influence of additives on the microstructure and tensile properties of near-eutectic Al-10.8%Si cast alloy. Materials and Design, 30(10), 3943–3957. https://doi.org/10.1016/j.matdes.2009.05.042
54. Gencalp Irizalp, S., &Saklakoglu, N. (2014). Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy. Engineering Science and Technology, an International Journal, 17(2), 58–62. https://doi.org/10.1016/j.jestch.2014.03.006
55. Zhou, Y., Zhou, D., Jin, X., Zhang, L., Du, X., & Li, B. (2018). Design of non-equiatomic medium-entropy alloys. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-19449-0
56. Hughes, D., Hansen, N., & Bammann, D. (2003). Geometrically necessary boundaries, incidental dislocation boundaries and geometrically necessary dislocations. Scripta Materialia, 48(2), 147-153. https://doi.org/10.1016/s1359-6462(02)00358-5
57. Meyers, M., & Chawla, K. (2009). Mechanical behavior of materials. Cambridge University Press.
58. Zhu, T., & Li, J. (2010). Ultra-strength materials. Progress In Materials Science, 55(7), 710-757. https://doi.org/10.1016/j.pmatsci.2010.04.001
59. Koch, C., & Schunk, D. (2013). Limiting Liability? — Risk and Ambiguity Attitudes Under Real Losses. Schmalenbach Business Review, 65(1), 54-75. https://doi.org/10.1007/bf03396850
60. Wang, Y., Chen, M., Zhou, F., & Ma, E. (2002). High tensile ductility in a nanostructured metal. Nature, 419(6910), 912-915. https://doi.org/10.1038/nature01133
61. Ritchie, R. (2011). The conflicts between strength and toughness. Nature Materials, 10(11), 817-822. https://doi.org/10.1038/nmat3115
62. Valiev, R., Alexandrov, I., Zhu, Y., & Lowe, T. (2002). Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation. Journal Of Materials Research, 17(1), 5-8. https://doi.org/10.1557/jmr.2002.0002
63. Ma, E., & Zhu, T. (2017). Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Materials Today, 20(6), 323-331. https://doi.org/10.1016/j.mattod.2017.02.003
64. Huang, C., Wang, Y., Ma, X., Yin, S., Höppel, H., & Göken, M. et al. (2018). Interface affected zone for optimal strength and ductility in heterogeneous laminate. Materials Today, 21(7), 713-719. https://doi.org/10.1016/j.mattod.2018.03.006
65. Tang, Z., Yuan, T., Tsai, C., Yeh, J., Lundin, C., & Liaw, P. (2015). Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy. Acta Materialia, 99, 247-258. https://doi.org/10.1016/j.actamat.2015.07.004
66. Fleck, N., Kang, K., & Ashby, M. (1994). Overview no. 112. Acta Metallurgica Et Materialia, 42(2), 365-381. https://doi.org/10.1016/0956-7151(94)90493-6
67. Kim, J., Jang, M., Park, H., Chin, K., Lee, S., & Kim, H. (2019). Back-Stress Effect on the Mechanical Strength of TWIP-IF Steels Layered Sheet. Metals And Materials International, 25(4), 912-917. https://doi.org/10.1007/s12540-019-00258-7
68. Zhu, Y., & Wu, X. (2019). Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters, 7(10), 393-398. https://doi.org/10.1080/21663831.2019.1616331
69. Wu, X., & Zhu, Y. (2017). Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters, 5(8), 527-532. https://doi.org/10.1080/21663831.2017.1343208
70. Yang, M., Yuan, F., Xie, Q., Wang, Y., Ma, E., & Wu, X. (2016). Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Materialia, 109, 213-222. https://doi.org/10.1016/j.actamat.2016.02.044
71. Ashby, M. (1970). The deformation of plastically non-homogeneous materials. The Philosophical Magazine: A Journal Of Theoretical Experimental And Applied Physics, 21(170), 399-424. https://doi.org/10.1080/14786437008238426
72. Wu, X., Yang, M., Yuan, F., Wu, G., Wei, Y., Huang, X., & Zhu, Y. (2015). Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proceedings Of The National Academy Of Sciences, 112(47), 14501-14505. https://doi.org/10.1073/pnas.1517193112
73. Wu, X., Jiang, P., Chen, L., Zhang, J., Yuan, F., & Zhu, Y. (2014). Synergetic Strengthening by Gradient Structure. Materials Research Letters, 2(4), 185-191. https://doi.org/10.1080/21663831.2014.935821
74. Yang, M., Pan, Y., Yuan, F., Zhu, Y., & Wu, X. (2016). Back stress strengthening and strain hardening in gradient structure. Materials Research Letters, 4(3), 145-151. https://doi.org/10.1080/21663831.2016.1153004
75. Yang, M., Yuan, F., Xie, Q., Wang, Y., Ma, E., & Wu, X. (2016). Strain hardening in Fe–16Mn–10Al–0.86C–5Ni high specific strength steel. Acta Materialia, 109, 213-222. https://doi.org/10.1016/j.actamat.2016.02.044
76. Zherebtsov, S., Yurchenko, N., Panina, E., Tikhonovsky, M., & Stepanov, N. (2020). Gum-like mechanical behavior of a partially ordered Al5Nb24Ti40V5Zr26 high entropy alloy. Intermetallics, 116, 106652. https://doi.org/10.1016/j.intermet.2019.106652
77. Tian, Q., Zhang, G., Yin, K., Wang, W., Cheng, W., & Wang, Y. (2019). The strengthening effects of relatively lightweight AlCoCrFeNi high entropy alloy. Materials Characterization, 151, 302-309. https://doi.org/10.1016/j.matchar.2019.03.006
78. Wang, Z., Fang, Q., Li, J., Liu, B., & Liu, Y. (2018). Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. Journal Of Materials Science & Technology, 34(2), 349-354. https://doi.org/10.1016/j.jmst.2017.07.013
79. 21. Zhang, X., Huang, J., Lin, P., Liu, T., Wu, Y., & Li, W. et al. (2020). Microstructure and mechanical properties of Tix(AlCrVNb)100-x light weight multi-principal element alloys. Journal Of Alloys And Compounds, 831, 154742. https://doi.org/10.1016/j.jallcom.2020.154742
80. Petch, N. (1958). The ductile-brittle transition in the fracture of α-iron: I. Philosophical Magazine, 3(34), 1089-1097. https://doi.org/10.1080/14786435808237038
81. Wu, Z., Bei, H., Pharr, G., & George, E. (2014). Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 81, 428-441. https://doi.org/10.1016/j.actamat.2014.08.026
82. Labusch, R. (1970). A Statistical Theory of Solid Solution Hardening. Physica Status Solidi (B), 41(2), 659-669. https://doi.org/10.1002/pssb.19700410221\r
83. Fleischer, R. (1963). Substitutional solution hardening. Acta Metallurgica, 11(3), 203-209. https://doi.org/10.1016/0001-6160(63)90213-x
84. Senkov, O., Scott, J., Senkova, S., Miracle, D., & Woodward, C. (2011). Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal Of Alloys And Compounds, 509(20), 6043-6048. https://doi.org/10.1016/j.jallcom.2011.02.171
85. Soni, V., Senkov, O., Gwalani, B., Miracle, D., & Banerjee, R. (2018). Microstructural Design for Improving Ductility of An Initially Brittle Refractory High Entropy Alloy. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-27144-3
86. Yuan, B., Li, C., Yu, H., & Sun, D. (2010). Influence of hydrogen content on tensile and compressive properties of Ti–6Al–4V alloy at room temperature. Materials Science And Engineering: A, 527(16-17), 4185-4190. https://doi.org/10.1016/j.msea.2010.03.052
87. Liao, Y., Li, T., Tsai, P., Jang, J., Hsieh, K., & Chen, C. et al. (2020). Designing novel lightweight, high-strength and high-plasticity Ti (AlCrNb)100- medium-entropy alloys. Intermetallics, 117, 106673. https://doi.org/10.1016/j.intermet.2019.106673
88. Wei, Y., Li, Y., Zhu, L., Liu, Y., Lei, X., & Wang, G. et al. (2014). Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nature Communications, 5(1). https://doi.org/10.1038/ncomms4580
89. Zhang, C., Zhu, C., Cao, P., Wang, X., Ye, F., & Kaufmann, K. et al. (2020). Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. Acta Materialia, 199, 602-612. https://doi.org/10.1016/j.actamat.2020.08.043 |