博碩士論文 108356015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.117.153.38
姓名 因敏綸(Min-Lun Yin)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 金屬氧化物在尿素-氯化膽鹼深共熔溶液的溶解機制
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 深共熔溶液(Deep Eutectic Solvent, DES)為近年廣泛研究的綠色溶液之一,將氯化膽鹼和尿素以莫耳比1:2的比例混合是典型的DES。雖然DES對多種金屬氧化物都有良好溶解度,但其溶解機制仍甚不清楚。本研究因此探討氯化膽鹼和尿素的組成成分,在溶解氧化亞銅(Cu2O)所扮演的角色。透過比較氧化亞銅溶解在DES、接近飽和的氯化膽鹼水溶液、尿素水溶液的溶解度和紫外光-可見光譜,發現尿素對溶解Cu2O的影響大。此外,比較銅氯化物、Cu2O和銅金屬溶解在DES和水溶液中的結果,可推論Cu2O溶於DES的機制,是由1價的銅離子與尿素形成錯合物而穩定溶解。最後,探討改變尿素在DES比例,發現增加尿素比例可提高DES對Cu2O的溶解能力,但須將溶液溫度保持在70 ℃才能有較好的操作條件。
摘要(英) Recently, Deep Eutectic Solvent (DES) is known as one of the widely studied green solution with a typical molar mixing ratio of 1:2 between choline chloride and urea. Although many metal oxides have good solubility in DES, the mechanism of it is still lacking. This study consequently investigated the role of choline chloride and urea in dissolving copper (I) oxide (Cu2O). Urea was found to play a significant role in dissolving Cu2O from comparing the solubility and UV-vis absorption spectrogram of dissolved Cu2O in DES, near saturated choline chloride, and urea aqueous solutions. Moreover, the mechanism of dissolving Cu2O in DES was derived from the formation of a stable complex between copper (I) and urea by comparing copper (II) chloride, Cu2O, and metal copper dissolved in both DES and deionized water. Finally, the solubility of Cu2O in DES can be improved by varying urea fractions in DES and maintained temperature at 70 ℃ during operation.
關鍵字(中) ★ 深共熔溶液
★ 氯化膽鹼-尿素
★ 氧化亞銅
★ 溶解
關鍵字(英) ★ Deep eutectic solvent
★ Choline chloride-urea
★ Copper (I) oxide
★ Dissolution
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 綠色溶液 3
2-1-1 綠色化學 3
2-1-2 綠色溶劑 5
2-2 深共熔溶液簡介 8
2-2-1 離子溶液 8
2-2-2 深共熔溶液 13
2-3 銅資源循環再利用 19
2-3-1 銅資源重要性 19
2-3-2 PCB產業產生之銅廢料 20
2-4 深共熔溶液溶解金屬氧化物的研究現況 24
第三章 研究方法 28
3-1 研究架構 28
3-2 實驗材料與藥品 29
3-3 儀器設備 31
3-4 紫外光-可見光光譜儀分析原理 34
3-5 實驗方法 39
第四章 結果與討論 44
4-1 尿素和氯化膽鹼在氧化亞銅溶解過程的角色 44
4-2 氧化亞銅在深共熔溶液中的溶解型態和途徑 51
4-2-1 CuCl2和CuCl化合物在深共熔溶液中的溶解 51
4-2-2 Cu金屬在深共熔溶液中的溶解 58
4-3 氧化亞銅在不同尿素比例DES中的溶解 65
第五章 結論與建議 71
第六章 參考文獻 73
附錄 口試與外審意見答覆修正表 80
參考文獻 [1] A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed, and V. Tambyrajah, "Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains," Chem Commun (Camb), no. 19, pp. 2010-1, Oct 7 2001.
[2] H. Qin, X. Hu, J. Wang, H. Cheng, L. Chen, and Z. Qi, "Overview of acidic deep eutectic solvents on synthesis, properties and applications," Green Energy & Environment, vol. 5, no. 1, pp. 8-21, 2020.
[3] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, "Novel solvent properties of choline chloride/urea mixtures," Chem Commun (Camb), no. 1, pp. 70-1, Jan 7 2003.
[4] K. Radosevic, M. C. Bubalo, V. G. Srcek, D. Grgas, T. L. Dragicevic, and I. R. Redovnikovic, "Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents," Ecotoxicol Environ Saf, vol. 112, pp. 46-53, Feb 2015.
[5] P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice. Oxford University Press, 1998.
[6] 行政院環保署毒物及化學物質局. (2019). 綠色化學定義及原則. Available: https://topic.epa.gov.tw/greenchem/cp-302-8060-e6081-1.html
[7] 行政院環保署土壤及地下水污染整治基金管理會. (2021). 臺灣美國無線電公司(RCA)場址整治. Available: https://sgw.epa.gov.tw/public/introduction/introduction-03/0602-cps/cps-3
[8] W. M. Nelson, Green solvents for chemistry: perspectives and practice. Oxford University Press, 2003.
[9] Y. Gu and F. Jerome, "Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry," Chem Soc Rev, vol. 42, no. 24, pp. 9550-70, Dec 21 2013.
[10] M. Meshksar, F. Afshariani, and M. R. Rahimpour, "Industrial Applications of Green Solvents for Sustainable Development of Technologies in Organic Synthesis," in Applications of Nanotechnology for Green Synthesis(Nanotechnology in the Life Sciences: Springer), 2020, pp. 435-455.
[11] C. Capello, U. Fischer, and K. Hungerbühler, "What is a green solvent? A comprehensive framework for the environmental assessment of solvents," Green Chemistry, vol. 9, no. 9, 2007.
[12] F.P. Byrne, S. Jin, G. Paggiola, T.H.M. Petchey, J.H. Clark, T.J. Farmer, A.J. Hunt, C. Robert McElroy, J. Sherwood, "Tools and techniques for solvent selection: green solvent selection guides," Sustainable Chemical Processes, vol. 4, no. 1, 2016.
[13] J. S. Wilkes, "A short history of ionic liquids—from molten salts to neoteric solvents," Green Chemistry, vol. 4, no. 2, pp. 73-80, 2002.
[14] W. Silva, M. Zanatta, A. S. Ferreira, M. C. Corvo, and E. J. Cabrita, "Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis," Int J Mol Sci, vol. 21, no. 20, Oct 19 2020.
[15] P. Walden, "Molecular weights and electrical conductivity of several fused salts," Bull. Acad. Imper. Sci. St.-Petersbourg, pp. 405–422, 1914.
[16] J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, "Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis," Inorganic Chemistry, vol. 21, no. 3, pp. 1263-1264, 2002.
[17] M. Freemantle, "Designer Solvents," Chemical & Engineering News Archive, vol. 76, no. 13, pp. 32-37, 2010.
[18] K. N. Marsh, A. Deev, A. C. T. Wu, E. Tran, and A. Klamt, "Room temperature ionic liquids as replacements for conventional solvents – A review," Korean Journal of Chemical Engineering, vol. 19, no. 3, pp. 357-362, 2002.
[19] F. Pena-Pereira and J. Namiesnik, "Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes," ChemSusChem, vol. 7, no. 7, pp. 1784-800, Jul 2014.
[20] H. L. Chum, V. R. Koch, L. L. Miller, and R. A. Osteryoung, "Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt," Journal of the American Chemical Society, vol. 97, no. 11, pp. 3264-3265, 2002.
[21] C. A. Angell, "Fused Salts," Annual Review of Physical Chemistry, vol. 22, no. 1, pp. 429-464, 1971.
[22] F. H. Hurley and T. P. Wier, "The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature," Journal of The Electrochemical Society, vol. 98, no. 5, 1951.
[23] J. Flieger and M. Flieger, "Ionic Liquids Toxicity-Benefits and Threats," Int J Mol Sci, vol. 21, no. 17, Aug 29 2020.
[24] B. Kudlak, K. Owczarek, and J. Namiesnik, "Selected issues related to the toxicity of ionic liquids and deep eutectic solvents--a review," Environ Sci Pollut Res Int, vol. 22, no. 16, pp. 11975-92, Aug 2015.
[25] M. G. Freire, C. M. Neves, I. M. Marrucho, J. A. Coutinho, and A. M. Fernandes, "Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids," J Phys Chem A, vol. 114, no. 11, pp. 3744-9, Mar 25 2010.
[26] N. V. Plechkova and K. R. Seddon, "Applications of ionic liquids in the chemical industry," Chem Soc Rev, vol. 37, no. 1, pp. 123-50, Jan 2008.
[27] D. R. MacFarlane, J. Golding, S. Forsyth, M. Forsyth, and G. B. Deacon, "Low viscosity ionic liquids based on organic salts of the dicyanamide anion," Chemical Communications, no. 16, pp. 1430-1431, 2001.
[28] A. E. Visser, J. D. Holbrey, and R. D. Rogers, "Hydrophobic ionic liquids incorporating N-alkylisoquinolinium cations and their utilization in liquid-liquid separations," Chem Commun (Camb), no. 23, pp. 2484-5, Dec 7 2001.
[29] P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, "Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts," Inorg Chem, vol. 35, no. 5, pp. 1168-1178, Feb 28 1996.
[30] J. S. Wilkes and M. J. Zaworotko, "Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids," Journal of the Chemical Society, Chemical Communications, no. 13, 1992.
[31] T. Mandai, K. Yoshida, K. Ueno, K. Dokko, and M. Watanabe, "Criteria for solvate ionic liquids," Phys Chem Chem Phys, vol. 16, no. 19, pp. 8761-72, May 21 2014.
[32] P. Dominguez de Maria and Z. Maugeri, "Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents," Curr Opin Chem Biol, vol. 15, no. 2, pp. 220-5, Apr 2011.
[33] P. Wasserscheid, A. Bosmann, and C. Bolm, "Synthesis and properties of ionic liquids derived from the ′chiral pool′," Chem Commun (Camb), no. 3, pp. 200-1, Feb 7 2002.
[34] R. Giernoth, "Task-specific ionic liquids," Angew Chem Int Ed Engl, vol. 49, no. 16, pp. 2834-9, Apr 6 2010.
[35] J. J. H. Davis, "Task-Specific Ionic Liquids," Chemistry Letters, vol. 33, no. 9, pp. 1072-1077, 2004.
[36] F. Ren, J. Wang, F. Xie, K. Zan, S. Wang, and S. Wang, "Applications of ionic liquids in starch chemistry: a review," Green Chemistry, vol. 22, no. 7, pp. 2162-2183, 2020.
[37] A. P. Abbott, J. C. Barron, K. S. Ryder, and D. Wilson, "Eutectic-based ionic liquids with metal-containing anions and cations," Chemistry, vol. 13, no. 22, pp. 6495-501, 2007.
[38] E. L. Smith, A. P. Abbott, and K. S. Ryder, "Deep eutectic solvents (DESs) and their applications," Chem Rev, vol. 114, no. 21, pp. 11060-82, Nov 12 2014.
[39] A. P. Abbott, G. Capper, D. L. Davies, and R. K. Rasheed, "Ionic liquid analogues formed from hydrated metal salts," Chemistry, vol. 10, no. 15, pp. 3769-74, Aug 6 2004.
[40] S.-I. Hsiu, J.-F. Huang, I. W. Sun, C.-H. Yuan, and J. Shiea, "Lewis acidity dependency of the electrochemical window of zinc chloride–1-ethyl-3-methylimidazolium chloride ionic liquids," Electrochimica Acta, vol. 47, no. 27, pp. 4367-4372, 2002.
[41] M. S. Sitze, E. R. Schreiter, E. V. Patterson, and R. G. Freeman, "Ionic liquids based on FeCl(3) and FeCl(2). Raman scattering and ab initio calculations," Inorg Chem, vol. 40, no. 10, pp. 2298-304, May 7 2001.
[42] A. P. Abbott, D. Boothby, G. Capper, D. L. Davies, and R. K. Rasheed, "Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids," J Am Chem Soc, vol. 126, no. 29, pp. 9142-7, Jul 28 2004.
[43] A. P. Abbott, G. Capper, B. G. Swain, and D. A. Wheeler, "Electropolishing of stainless steel in an ionic liquid," Transactions of the IMF, vol. 83, no. 1, pp. 51-53, 2013.
[44] A.P. Abbott, A.A. Al-Barzinjy, P.D. Abbott, G. Frisch, R.C. Harris, J. Hartley, K.S. Ryder, "Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl(3).6H(2)O and urea," Phys Chem Chem Phys, vol. 16, no. 19, pp. 9047-55, May 21 2014.
[45] J. Richter and M. Ruck, "Synthesis and Dissolution of Metal Oxides in Ionic liquids and Deep Eutectic Solvents," Molecules, vol. 25, no. 1, Dec 24 2019.)
[46] D. Yue, Y. Jia, Y. Yao, J. Sun, and Y. Jing, "Structure and electrochemical behavior of ionic liquid analogue based on choline chloride and urea," Electrochimica Acta, vol. 65, pp. 30-36, 2012.
[47] H. Sun, Y. Li, X. Wu, and G. Li, "Theoretical study on the structures and properties of mixtures of urea and choline chloride," J Mol Model, vol. 19, no. 6, pp. 2433-41, Jun 2013.
[48] 行政院. (2019). “循環經濟推動方案”, Available: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/18ef26a4-5d05-4fb3-963e-6b228e713576
[49] 行政院環保署水保處. (2017). “環保署全面加嚴重金屬管制 杜絕農地重金屬污染,”. Available: https://enews.epa.gov.tw/Page/3B3C62C78849F32F/275cdd87-e31f-49cc-a23b-5751de925e60
[50] 行政院環保署. (2017). “銅-關鍵物料調查報告,” Available: https://smmdb.epa.gov.tw/SMM/webpage/criticalmaterialdetail.aspx?year=105&name=%E9%8A%85
[51] 莊貴貽, 邱國展. (2019/09) “PCB材料循環再利用技術,” 工業材料雜誌. 55-61. Available: https://www.materialsnet.com.tw/DocView.aspx?id=40288
[52] 林大均,(2020), "循環經濟下廠內銅廢料的產品概況與趨勢剖析," 金屬情報網, Available: http://mii.mirdc.org.tw/Report/Detail/849?docid=MDOC20200611002&cname=%28%E8%A9%95%29%E9%9D%9E%E9%90%B5%E9%87%91%E5%B1%AC%E8%88%87%E6%87%89%E7%94%A8-%E9%8A%85%E5%90%88%E9%87%91.
[53] 經濟部工業局, 臺灣綠色生產力基金會, 印刷電路板業資源化應用技術手冊. 經濟部工業局出版, 2009.
[54] A. P. Abbott, G. Frisch, J. Hartley, and K. S. Ryder, "Processing of metals and metal oxides using ionic liquids," Green Chemistry, vol. 13, no. 3, 2011.
[55] H. Tokuda, K. Hayamizu, K. Ishii, M. A. Susan, and M. Watanabe, "Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation," J Phys Chem B, vol. 109, no. 13, pp. 6103-10, Apr 7 2005.
[56] A. P. Abbott, G. Capper, D. L. Davies, K. J. McKenzie, and S. U. Obi, "Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride," Journal of Chemical & Engineering Data, vol. 51, no. 4, pp. 1280-1282, 2006.
[57] Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jerome, "Deep eutectic solvents: syntheses, properties and applications," Chem Soc Rev, vol. 41, no. 21, pp. 7108-46, Nov 7 2012.
[58] A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and P. Shikotra, "Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids," Inorg Chem, vol. 44, no. 19, pp. 6497-9, Sep 19 2005.
[59] V. C. Ana-Maria Julieta Popescu, Mircea Olteanu, Olga Demidenko, Kazimir Yanushkevich, "Obtaining and Structural Characterization of the Electrodeposited Metallic Copper from Ionic Liquids," Revista de Chimie, vol. 62, no. 6, pp. 626-632, 2001.
[60] Q. B. Zhang and Y. X. Hua, "Electrochemical synthesis of copper nanoparticles using cuprous oxide as a precursor in choline chloride-urea deep eutectic solvent: nucleation and growth mechanism," Phys Chem Chem Phys, vol. 16, no. 48, pp. 27088-95, Dec 28 2014.
[61] 張寶貴;韓長秀;畢成良等編著, 1, Ed. 儀器分析. 滄海, 2011.
[62] M. S. H. Akash and K. Rehman, "Ultraviolet-Visible (UV-VIS) Spectroscopy," in Essentials of Pharmaceutical Analysis, 2020, pp. 29-56.
[63] 梁碧峯編著, "過渡金屬離子之電子光譜," in 無機配位化學1 ed.: 滄海, 2010, pp. 189-284.
[64] Skoog, 林敬二審議. 儀器分析(上冊), 5 ed. 美亞書版, 2005.
[65] T. Wen, F. Qu, N. B. Li, and H. Q. Luo, "A facile, sensitive, and rapid spectrophotometric method for copper(II) ion detection in aqueous media using polyethyleneimine," Arabian Journal of Chemistry, vol. 10, pp. S1680-S1685, 2017.
[66] B. Dutta, E. Kar, N. Bose, and S. Mukherjee, "Significant enhancement of the electroactive β-phase of PVDF by incorporating hydrothermally synthesized copper oxide nanoparticles," RSC Advances, vol. 5, no. 127, pp. 105422-105434, 2015.
[67] 李兆寧, 趙彥杰, and 湯玉鵬, "尿素水溶液凝固結晶附著力特性研究," 化工學報, vol. 69, no. S2, pp. 232-239, 2018.
[68] M. Gilmore, M. Swadzba-Kwasny, and J. D. Holbrey, "Thermal Properties of Choline Chloride/Urea System Studied under Moisture-Free Atmosphere," Journal of Chemical & Engineering Data, vol. 64, no. 12, pp. 5248-5255, 2019.
[69] N. Delgado-Mellado, M. Larriba, P. Navarro, V. Rigual, M. Ayuso, J. García, F. Rodríguez, "Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis," Journal of Molecular Liquids, vol. 260, pp. 37-43, 2018.
[70] W.F. Wu, X.L. He, Z.H. Fu, Y.C. Liu, Y.L. Wang, X.L. Gong, X.L. Deng, H.T. Wu, Y.H. Zou, N.Y. Yu, D.L. Yin, "Metal chlorides-catalyzed selective oxidation of cyclohexane by molecular oxygen under visible light irradiation," Journal of Catalysis, vol. 286, pp. 6-12, Feb 2012.
[71] C. Lamberti, C. Prestipino, L. Capello, S. Bordiga, A. Zecchina, G. Spoto, S. Moreno, A. Marsella, B. Cremaschi, M. Garilli, S. Vidotto, G. Leofanti, "The CuCl2/Al2O3 Catalyst Investigated in Interaction with Reagents," International Journal of Molecular Sciences, 2(5) (2001) 230-245.
[72] A.P. Abbott, G. Frisch, S.J. Gurman, A.R. Hillman, J. Hartley, F. Holyoak, K.S. Ryder, "Ionometallurgy: designer redox properties for metal processing," Chem Commun (Camb), vol. 47, no. 36, pp. 10031-3, Sep 28 2011.
[73] J. Tang, C. Xu, X. Zhu, H. Liu, X. Wang, M. Huang, Y. Hua, Q. Zhang, Y. Li, "Anodic Dissolution of Copper in Choline Chloride-Urea Deep Eutectic Solvent," Journal of The Electrochemical Society, vol. 165, no. 9, pp. E406-E411, 2018.
指導教授 李崇德(Chung-Te Lee) 審核日期 2021-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明