參考文獻 |
REFERENCES
1. N. B. Lahore and S. P. Rahimyar, Laser Fabrication and Machining of Materials, Springer, New York, pp. 291-349, 2008.
2. N. B. Dahotre and S. P. Harimkar, Laser Fabrication and Machining of Materials, Springer, New York, pp. 67-96, 2008.
3. M. Marya and G.R. Edwards, “A Study on the Laser Forming of Near-alpha and Metastable Beta Titanium Alloy Sheets,” Journal of Materials Processing Technology, Vol. 108, pp. 376-383, 2001.
4. D. J. Chen, S. C. Wu, and M. Q. Li, “Studies on Laser Forming of Ti–6Al–4V Alloy Sheet,” Journal of Materials Processing Technology, Vol. 152, pp. 62-65, 2004.
5. D. P. Shidid, M. H. Gollo, M. Brandt, and M. Mahdavian, “Study of Effect of Process Parameters on Titanium Sheet Metal Bending Using Nd:YAG Laser,” Optics & Laser Technology, Vol. 47, pp. 242-247, 2013.
6. X. R. Zhang and X. Xu, “Finite Element Analysis of Pulsed Laser Bending: The Effect of Melting and Solidification,” Journal of Applied Mechanics, Vol. 71, pp. 321-326, 2004.
7. E. Ramos-Moore, J. Hoffmann, R. H. M. Siqueira, S. Medeiros de Carvalho, M. S. Fernandes de Lima, and D. J. Celentano, “Experimental and Simulation Analysis of Effects of Laser Bending on Microstructures Applied to Advanced Metallic Alloys,” Metals, Vol. 11, 362, 2021.
8. J. Liu, S. Sun and Y. Guan, “Numerical Investigation on the Laser Bending of Stainless Steel Foil with Pre-stresses,” Journal of Materials Processing Technology, Vol. 209, pp. 1580-1587, 2009.
9. Mirle, News, https://pse.is/3m2k95, accessed on August 4, 2021.
10. E. Gartner, J. Fruhauf, U. Loschner, and H. Exner, “Laser Bending of Etched Silicon Microstructures,” Microsystem Technologies, Vol. 7, pp. 23-26, 2001.
11. D. Wu, Q. Zhang, G. Ma, Y. Guo, and D. Guo, “Laser Bending of Brittle Materials,” Optics and Lasers in Engineering, Vol. 48, pp. 405-410, 2010.
12. D. Wu, G. Ma, F. Niu, and D. Guo, “Temperature Gradient Mechanism on Laser Bending of Borosilicate Glass Sheet,” Journal of Manufacturing Science and Engineering, Vol. 132, 011013, 2010.
13. T. R. Shiu, C. P. Grigoropoulos, D. G. Cahill, and R. Greif, “Mechanism of Bump Formation on Glass Substrates During Laser Texturing,” Journal of Applied Physics, Vol. 86, pp. 1311-1316, 1999.
14. E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony Series Spectra of Structural Relaxation in N-BK7 for Finite Element Modeling,” Journal of Physical Chemistry A, Vol. 116, pp. 12198-12205, 2012.
15. Y. Xiao, W. Wang, X. Wu, and J. Zhang, “Process Design Based on Temperature Field Control for Reducing the Thermal Residual Stress in Glass/Glass Laser Bonding,” Optics & Laser Technology, Vol. 91, pp. 85-91, 2017.
16. B. W. Fan, K. Q. Zhu, Q. Shi, T. Sun, N. Y. Yuan, and J. N. Ding, “Effect of Glass Thickness on Temperature Gradient and Stress Distribution During Glass Tempering,” Journal of Non-Crystalline Solids, Vol. 437, pp. 72-79, 2016.
17. G. X. Zhang, “Existence of Stresses and Prevention of Rupture During Glass Fire-Polishing,” M.S. Thesis, National Chiao Tung University, Hsinchu, Taiwan, 2005.
18. A. Jain and A. Y. Yi, “Numerical Modeling of Viscoelastic Stress Relaxation During Glass Lens Forming Process,” Journal of the American Ceramic Society, Vol. 88, pp. 530-535, 2005.
19. O. S. Narayanaswamy, “A Model of Structural Relaxation in Glass,” Journal of the American Ceramic Society, Vol. 54, pp.491-498, 1971.
20. Q. S. Wang, Y. Zhang, J. H. Sun, J. Wen, and S. Dembele, “Temperature and Thermal Stress Simulation of Window Glass Exposed to Fire,” Procedia Engineering, Vol. 11, pp. 452-460, 2011.
21. M. B. Kadri, S. Nisar, S. Z. Khan, and W. A. Khan, “Comparison of ANN and Finite Element Model for the Prediction of Thermal Stresses in Diode Laser Cutting of Float Glass,” Optik-International Journal for Light and Electron Optics, Vol. 126, pp. 1959-1964, 2015.
22. K. Ogata, K. Nagato, Y. Ito, H. Nakano, T. Hamaguchi, I. Saito, T. Fujiwara, T. Nagata, Y. Ito, and M. Nakao, “Real-time Observation of Crack Propagation and Stress Analysis During Laser Cutting of Glass,” Journal of Laser Applications, vol. 31, 042008, 2019.
23. S. H. Chae, J. H. Zhao, D. R. Edwards, and P. S. Ho, “Characterization of the Viscoelasticity of Molding Compounds in the Time Domain,” Journal of Electronic Materials, Vol. 39, pp. 419-425, 2010.
24. M. Rubin, “Optical Properties of Soda-Lime Silica Glasses,” Solar Energy Materials, Vol. 12, pp. 275-288, 1985.
25. H. Wang, W. D. Porter, and R. B. Dinwiddie, “G-Plus Report to Owens Corning Thermophysical Properties of Glasses”, Report Number: ORNL/TM-2004/72, Oak Ridge National Laboratory, 2004.
26. E. C. Kinzel, H. H. Sigmarsson, X. Xu, and W. J. Chappell, “Laser Sintering of Thick-Film Conductors for Microelectronic Applications,” Journal of Applied Physics, Vol. 101, 063106, 2007.
27. A. Fluegel, D. A. Earl, A. K. Varshneya, and T. R. Seward, “Density and Thermal Expansion Calculation of Silicate Glass Melts from 1000 °C to 1400 °C,” Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, Vol. 49, pp. 245-257, 2008.
28. O. V. Mazurin, “Problems of Compatibility of the Values of Glass Transition Temperatures Published in the World Literature,” Glass Physics and Chemistry, Vol. 33, pp. 22-36, 2007.
29. T. Rouxel, “Elastic Properties and Short to Medium-Range Order in Glasses,” Journal of the American Ceramic Society, Vol. 90, pp. 3019-3039, 2007.
30. G. N. Greaves, A. L. Greer, R. S. Lakes, and T. Rouxel, “Poisson′s Ratio and Modern Materials,” Nature Materials, Vol. 10, pp. 823-37, 2011.
31. A. S. Tijani, and A. M. S. B. Roslan, “Simulation Analysis of Thermal Losses of Parabolic Trough Solar Collector in Malaysia Using Computational Fluid Dynamics,” Procedia Technology, Vol. 15, pp. 841-848, 2014. |