博碩士論文 106326018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.119.103.130
姓名 吳東翰(Dong-Hun Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 廢車破碎殘餘物與漿紙污泥共同氣化 之可行性研究
(Feasibility study on co-gasification of automobile shredder residue and paper mill sludge)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 本研究利用實驗室規模流體化床氣化反應系統,進行廢車破碎殘餘物衍生燃料(ASR-RDF)與漿紙污泥衍生燃料(PMS-RDF),共同氣化轉換能源之可行性探討,試驗過程控制當量比(equivalence ratio, ER) 0.3、氣化溫度700°C,及改變不同PMS-RDF摻混比例(100:0、83:17、67:33及56:44)。為進一步評估氣化過程污染物的排放特性,試驗過程亦添加5%~15%之Ca(OH)2於ASR衍生燃料,期進一步探討ASR衍生燃料氣化過程含氯污染物去除之效率。根據共同氣化之產氣結果可知,100% ASR衍生燃料氣化產生之合成氣,平均含量約為 3.39 vol.%,合成氣之產氣熱值,則約介於0.37~0.68 MJ/Nm3。然當與漿紙污泥衍生燃料共同氣化反應,其中添加33%之漿紙污泥衍生燃料(67:33),其合成氣平均含量約可增加至5.11 vol.%,產氣熱值亦約可增加至0.64~1.59 MJ/Nm3,此係協同效應增加ASR之產能效率。此外,隨著摻配漿紙污泥衍生燃料比例之增加,對於氣相產物之氯含量,約可從0.28 ppm降低至0.06 ppm,去除效率約可達到78.6%。另外,添加Ca(OH)2於ASR衍生燃料之氣化試驗結果顯示,其對能源轉換效率之增加效果較不顯著,然當添加10%Ca(OH)2時,其氣相產物之氯含量,約可從0.28 ppm降低至0.1 ppm,去除效率約可達到64.3%。整體而言,ASR衍生燃料與漿紙污泥衍生燃料共同氣化,有利於提升能源轉換效率及合成氣含量,並有效抑制合成氣之HCl濃度,提升ASR轉換能源應用之可行性,本研究成果將可提供未來ASR共同氣化處理技術選擇之參考
摘要(英) This research investigates feasibility of co-gasification of automobile shredder residue derived fuel (ASR-RDF) and paper mill sludge derived fuel (PMS-RDF). The conversion energy experiments were controlled at equilibrium ratio (ER) 0.3, gasification temperature 700°C, and ASR-PMS amended ratio (100:0, 83:17, 67:33, 56:44). To further discuss the air pollutants containing chlorine removal efficiency, Ca(OH)2 was used as the amendment to adjust 5%-15 wt.% in ASR and to capture the chloride derived from in-situ ASR gasification. The producer gas composition, product distribution, energy yield efficiency, pollutants containing chlorine partitioning characterization were all evaluated in this research. Based on the analysis results of produced gas composition in co-gasification, the syngas composition produced from 100% ASR-RDF was 3.39 vol.% in average. The heating value of syngas was approximately ranged between 0.37 MJ/Nm3 and 0.68 MJ/Nm3. However, in the case of 33% PMS-RDF addition (i.e. 67:33 amended ratio), the syngas composition was significantly increased to 5.11 vol.% in average. The heating value of syngas was also increased ranged from 0.64 to 1.59 MJ/Nm3. This is the synergistic effect on the enhancement of syngas heating value produced from ASR gasification. The chlorine concentration of the syngas was decreased from 0.28 ppm to 0.06 ppm with the PMS-RDF addition increasing. The chlorine removal efficiency was approximately 78.6%. On the other hand, in the case of adding 15% Ca(OH)2, the enhanced energy conversion efficiency was insignificantly in ASR gasification. However, the chlorine concentration of the syngas could also decrease from 0.28 ppm to 0.1 ppm with the Ca(OH)2 addition increasing. The chlorine removal efficiency was also reached to 64.3%. In summary, the results obtained from this research could provide the good information on enhanced the energy conversion efficiency, syngas composition, and inhibiting of the HCl concentration produced in co-gasification of ASR and PMS. It is also proved the amended Ca(OH)2 in ASR-RDF could effectively reduce the HCl emission in ASR gasification. Therefore, the results of this research could provide the technological considerations of selection in ASR co-gasification in the future.
關鍵字(中) ★ 廢車破碎殘餘物
★ 漿紙污泥
★ 氣化技術
★ 氯化氫
★ 重金屬
關鍵字(英) ★ Automobile shredder residue
★ paper mill sludge
★ gasification
★ hydrogen chloride
★ heavy metal
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VII
圖目錄
表目錄
第一章 前言 1
第二章 文獻回顧 5
2-1 廢車破碎殘餘物 5
2-1-1廢車破碎殘餘物之處理現況 5
2-1-2廢車破碎殘餘物之特性 8
2-2漿紙污泥 13
2-2-1漿紙污泥之處理現況 13
2-2-2漿紙污泥之特性 14
2-3氣化技術 15
2-3-1氣化的原理 15
2-3-2 ASR熱處理技術 22
第三章 研究材料與方法 25
3-1 研究材料 25
3-1-1原料採樣及製備 25
3-1-2試驗操作條件 27
3-2 實驗方法 28
3-2-1實驗設備 28
3-2-2試驗流程 30
3-3 分析項目與方法 31
3-3-1 原料之基本特性分析 31
3-3-2氣化產物分析 36
3-3-3評估指標 41
3-3-4動力學分析 44
第四章 結果與討論 47
4-1 原料基本特性分析 47
4-1-1廢車破碎殘餘物之基本特性分析 47
4-1-2漿紙污泥之基本特性分析 52
4-1-3 ASR衍生燃料及漿紙污泥衍生燃料之基本特性分析 54
4-2 廢車破碎殘餘物及漿紙污泥熱反應動力學分析 58
4-2-1熱重損失之分析結果 58
4-2-2反應活性及活化能之分析結果 63
4-3 ASR衍生燃料與漿紙污泥衍生燃料共同氣化產能效率之評估 70
4-3-1共同氣化反應操作穩定性分析 70
4-3-2共同氣化之產氣組成變化 74
4-3-3共同氣化之液相產物 84
4-3-4共同氣化之固相產物 87
4-3-5質量平衡 92
4-4 共同氣化之產能效率評估 98
4-4-1共同氣化之合成氣特性分析 98
4-4-2 能量分佈特性 101
4-5 共同氣化產物之污染物分佈特性 105
4-5-1共同氣化產物之氯分佈 105
4-5-2共同氣化產物之重金屬分佈 111
4-5-3模擬污染物之排放分佈特性 127
第五章 結論與建議 131
5-1 ASR基本特性分析結果 131
5-2氣化試驗之成果 132
5-3建議 133
參考文獻 135
參考文獻 Alter, H., 1996. The Recycling of Densified Refuse-Derived Fuel. Waste Management & Research, 14, 311–317.
Aydar, E., Gul, S., Unlu, N., Akgun, F., Livatyali, H., 2014. Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87, 35–42.
Baumbach, G., Hartmann, H., Höfer, I., Hofbauer, H., 2016. Grundlagen der thermo-chemischen Umwandlung biogener Festbrennstoffe. Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 579–814.
Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L., 2013. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal of Cleaner Production, 55, 10–23.
Caputo, A. C., Pelagagge, P. M., 2002. RDF production plants: I Design and costs. Applied Thermal Engineering, 22, 423–437.
Chang, J. E., Jung, L., 2011. Evolution and prospect of 100 years of ROC-environmental science and technology. Journal of science development, 457, 103–108.
Chiang, K. Y., Lu, C. H., Liao, C. K., Ger, R. H. R., 2016. Characteristics of hydrogen energy yield by co-gasified of sewage sludge and paper-mill sludge in a commercial scale plant. International Journal of Hydrogen Energy, 41, 21641–21648.
Chiou, I. J., Chen, C. H., Lin, Y. S., 2014. Combustion behavior and optimal proportion of industrial sludge‐derived fuels. Environmental Progress & Sustainable Energy, 33, 1000–1007.
Cho, S. J., Jung, H. Y., Seo, Y. C., Kim, W. H., 2010. Studies on Gasification and Melting Characteristics of Automobile Shredder Residue. Environmental Engineering Science, 27, 577–586.
Cossu, R., Lai, T., 2015. Automotive shredder residue (ASR) management: An overview. Waste Management, 45, 143–151.
Marcello, M. D., Tsalidis, G. A., Spinelli, G., Jong, W., Kiel, J. H. A., 2017. Pilot scale steam-oxygen CFB gasification of commercial torrefied wood pellets. The effect of torrefaction on the gasification performance. Biomass and Bioenergy, 105, 411–420.
Donaj, P., Blasiaka, W., Yanga, W., Forsgren, C., 2011. Conversion of microwave pyrolysed ASR’s char using high temperature agents. Journal of Hazardous Materials, 185, 472–481.
Fiore, S., Ruffino, B., Zanetti, M. C., 2012. Automobile Shredder Residues in Italy: Characterization and valorization opportunities. Waste Management, 32, 1548–1559.
Fujimori, T., Takaoka, M., 2009. Direct Chlorination of Carbon by Copper Chloride in a Thermal Process. Environmental Science & Technology , 43, 7, 2241–2246.
González-Vázquez, M. P., García, R., Gil, M. V., Pevida, C., Rubiera, F., 2018. Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed. Energy Conversion and Management, 176, 309–323.
He, J., Yang, Z., Xiong, S., Guo, M., Yan, Y., Ran, J., Zhang, L.,2020. Experimental and thermodynamic study of banana peel non-catalytic gasification characteristics. Waste Management, 113, 369–378.
Hofbauer, H., Materazzi, M., 2019. Waste gasification processes for SNG production. Substitute natural gas from waste, 106–156.
Horii, M., Iida, S., 2001.Gasification and dry distillation of automobile shredder residue (ASR). JSAE Review, 22, 63–68.
Jayaraman, K., Kok, M. V., Gokalp, I., 2017. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy, 101, 293–300.
Jewell, J., 2011. The IEA model of short-term energy security(MOSES).
Karl, J., Pröll, T., 2018. Steam gasification of biomass in dual fluidized bed gasifiers: A review. Renewable and Sustainable Energy Reviews, 98, 64–78.
Khodier, A., Williams, K., Dallison, N., 2018. Challenges around automotive shredder residue production and disposal. Waste Management, 73, 566–573.
Khosasaeng, T., Suntivarakorn, R., 2017. Effect of equivalence ratio on an efficiency of single throat downdraft gasifier using RDF from municipal solid waste. Energy Procedia, 138, 784–788.
Kihedu, J. H., Yoshiie, R., Naruse, I., 2016. Performance indicators for air and air–steam auto-thermal updraft gasification of biomass in packed bed reactor. Fuel Processing Technology, 141, 93–98.
Kondoh, M., Hamai, M., Yamaguchi, M., Mori, S., 2001. Study of gasification characteristics of automobile shredder residue. JSAE review, 22, 221–236.
Kong, L., Hasanbeigi, A., Price, L., 2016. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. Journal of Cleaner Production, 122, 5–28.
Lee, J. M., Kim, D. W., Kim, J. S., Na, J. G., Lee, S. H., 2010. Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler′, Energy, 35, 2814–2818.
Lin, C., Zhang, J., Zhao, P., Wang, Z., Yang, M., Cui, X., Tian, H., Guo, Q., 2020. Gasification of real MSW-derived hydrochar under various atmosphere and temperature. Thermochimica Acta, 683, 178470.
Lin, K. S., Chowdhury, S., Wang, Z. P., 2010. Catalytic gasification of automotive shredder residues with hydrogen generation. Journal of Power Sources, 195, 6016–6023.
Mallampati, S. R., Lee, B . H., Mitoma, Y., Simion, C., 2017. Selective sequential separation of ABS/HIPS and PVC from automobile and electronic waste shredder residue by hybrid nano-Fe/Ca/CaO assisted ozonisation process. Waste Management, 60, 428–438.
Maric, J., Vilches, T. B., Pissot, S., Vela, I. C., Gyllenhammar, M., Seemann, M., 2020. Emissions of dioxins and furans during steam gasification of Automotive Shredder residue; experiences from the Chalmers 2–4-MW indirect gasifier. Waste Management, 102, 114–121.
Mayyas, M., Pahlevani, F., Handoko, W., Sahajwalla, V., 2016. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics. Waste Management, 50, 173–183.
Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25, 10–25.
Molino, A., Larocca, V., Chianese, S., Musmarra, D., 2018. Biofuels production by biomass gasification: A review. Energies, 11, 811.
Monte, M. C., Fuente, E., Blanco, A., Negro, C., 2009. Waste management from pulp and paper production in the European Union. Waste Management, 29, 293–308.
Nam, H., Wang, S., Sanjeev, K.C., Seo, M. W., Adhikari, S., Shakya, R., 2020.
Enriched hydrogen production over air and air-steam fluidized bed gasification in a bubbling fluidized bed reactor with CaO: Effects of biomass and bed material catalyst . Energy Conversion and Management, 225, 113408.
Ni, F., Chen, M., 2014. Studies on pyrolysis and gasification of automobile shredder residue in China. Waste management & research, 32, 980–987.
Ouadi, M., Brammer, J.G., Kay, M., Hornung, A., 2013. Fixed bed downdraft gasification of paper industry wastes. Applied Energy, 103, 692–699.
Passarini, F., Ciacci, L., Santini, A., Vassura, I., Morselli, L., 2012. Auto shredder residue LCA: implications of ASR composition evolution. Journal of Cleaner Production, 23, 28–36.
Prabu, S., Chiang, K. Y., 2021. Magnetically recyclable Co/ZnO@NiFe2O4 nanoparticles as highly active and reusable catalysts for hydrazine monohydrate hydrogen generation. Catalysis Science & Technology, 11, 1544–1557.
Raboni, M., Torretta, V., Urbini, G., Viotti, P., 2015. Automotive shredder residue: A survey of the hazardous organic micro-pollutants spectrum in landfill biogas. Waste management & research, 33, 48–54.
Automotive shredder residue: A survey of
the hazardous organic micro-pollutants
spectrum in landfill biogas
Automotive shredder residue: A survey of
the hazardous organic micro-pollutants
spectrum in landfill biogas
Ren, J., Cao, J. P., Zhao, X. Y., Yang, F. L., Wei, X. Y., 2019. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426.
Rivera, J. A., López, V. P., Casado, R. R., Hervás, J. M. S., 2016. Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Characterization and gasification test. Waste Management, 47, 225–235.
Ruffino, B., Fiore, S., Zanetti, M. C., 2014. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: Results and cost assessment. Waste Management, 34, 148–155.
Sakai, S., Yoshida, H., Hiratsuka, J., Vandecasteele, C., Kohlmeyer, R., 2014. An international comparative study of end-of-life vehicle (ELV) recycling systems. J Mater Cycles Waste Manag, 16, 1–20.
Sato, F. E. K., Furubayashi, T., Nakata, T., 2019. Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan. Applied energy, 237, 779–794.
Schmid, A., Naquin, P., Gourdonc, R., 2013. Incidence of the level of deconstruction on material reuse, recycling and recovery from end-of life vehicles: an industrial-scale experimental study. Resources, Conservation and Recycling, 72, 118–126.
Serrano, D., Kwapinska, M., Horvat, A., Sánchez-Delgado, S., Leahy, J. J., 2016. Cynara cardunculus L. gasification in a bubbling fluidized bed: The effect of magnesite and olivine on product gas, tar and gasification performance. Fuel, 173, 247–259.
Sheng, H. P., Alter. H., 1975. Energy recovery from municipal solid waste and method of comparing refuse-derived fuels. Resource recovery and conservation, 1, 85–93.
Shin, D., Jang, S., Hwang, J., 2005. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed. Waste Management, 25, 680–685.
Simic, V., Dimitrijevic, B., 2013. Modelling of automobile shredder residue recycling in the Japanese legislative context. Expert systems with applications, 40, 7159–7167.
Singh, R. I., Brink, A., Hupa, M., 2013. CFD modeling to study fluidized bed combustion and gasification. Applied Thermal Engineering, 52, 585–614.
Susastriawan, A. A. P., Saptoadi, H., Purnomo, 2017. Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989–1003.
Tai, H. S., Liu, C. M., Wu, Y. J., 2007. Dechlorination of auto shredder residues. Journal of Hazardous Materials, 142, 305–307.
Tai, H. S., He, W. H., 2015. An exploration of automotive shredder residue recovery as fuel in Taiwan. Journal of the Chinese Institute of Engineers, 38, 675–684.
Tchobanoglous, G., Theisen, H., Vigil, S., 1993. Integrated solid waste management: engineering principles and management issues.
Thakkar, M., Makwana, J. P., Mohanty, P., Shah, M., Singh, V., 2016. In bed catalytic tar reduction in the autothermal fluidized bed gasification of rice husk: Extraction of silica, energy and cost analysis. Industrial Crops and Products, 87, 324–332.
Thomson, R., Kwong, P., Ahmad, E., Nigam, K.D.P., 2020. Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. International Journal of Hydrogen Energy, 45, 21087–21111.
Trubetskaya, A., Beckmann, G., Wadenbäck, J., Holm, J. K., Velaga, S. P., Weber, R., 2017. One way of representing the size and shape of biomass particles in combustion modeling. Fuel, 206, 675–683.
Urbini, G., Viotti, P., Gavasci, R., 2014. Attenuation of methane, PAHs and VOCs in the soil covers of an automotive shredded residues landfill: A case study. Journal of Chemical and Pharmaceutical Research, 6(11),618–625.
Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences, 93, 2, 223–241.
Vigano, F., Consonni, S., Grosso, M., Rigamonti, L., 2010. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion. Waste management, 30, 145–153.
Wu, J. L., Lin, T. C., Wang, Y. F., Wang, J. W., Wang, C. T., Kuo, Y. M., 2014. Polychlorinated Dibenzo-p-dioxin and Dibenzofuran (PCDD/F) Emission Behavior during Incineration of Laboratory Waste. Part 1: Emission Profiles Obtained Using Chemical Assay and Bioassay. Aerosol and Air Quality Research, 14, 1199–1205.
Weiland, F., Lundin, L., Celebi, M., Vlist, K., Moradian, F., 2021. Aspects of chemical recycling of complex plastic waste via the gasification route. Waste Management, 126, 65–77.
Xie, Y., Yang, H., Zeng, K., Zhu, Y., Hu, J., Mao, Q., Liu, Q., Chen, H., 2019. Study on CO2 gasification of biochar in molten salts: reactivity and structure evolution. Fuel, 254, 115614.
Xiong, S., He, J., Yang, Z., Guo, M., Yan, Y., Ran, J., 2020. Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture. Energy, 194, 116831.
Yahaya, A. Z., Somalu, M. R., Muchtar, A., Sulaiman, S. A., Daud, W. R. W., 2019. Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy, 175, 931–940.
Yii, B. L. S., Ismail, W. M. S. W., Yahya, F. N., Rasid, R. A., 2019. The Effect of Operating Temperature and Equivalence Ratio in an Entrained Flow Gasification of EFB. Materials Today: Proceedings, 19, 1373–1381.
Zhang, L. , Xu, C., Champagne, P., 2010. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresource technology, 101, 2713–2721.
Zhao, Q., Chen, M., 2011. A comparison of ELV recycling system in China and Japan and China’s strategies. Resources, Conservation and Recycling, 57, 15–21.
Zhu, H. L., Zhang, Y. S., Materazzi, M., Aranda, G., Brett, D. J. L., Shearing, P. R., Manos, G., 2019. Co-gasification of beech-wood and polyethylene in a fluidized-bed reactor. Fuel Processing Technology, 190, 29–37.
鄭釋緣,江康鈺,應用自製催化劑評估廢車破碎殘餘物氣化重金屬排放特性,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
羅勻聘,江康鈺,呂佳明,黃永吉,張木彬,漿紙污泥與廢車破碎殘餘物 共同氣化產能評估與污染物排放特性建立之實廠驗證研究,中華民 國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
行政院環境保護署,環境資源資料庫應回收廢棄物回收量資料,網址: https://data.epa.gov.tw/dataset/wr_p_222/resource/7085ccfc-5682- 4e29-b34e-4fedf1936c0f,網頁擷取日期:2021年4月。
吳宜璁,產業污泥衍生燃料的製造特性與燃燒行為研究,碩士論文,桃園創新技術學院材料應用科技研究所,桃園,2014。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2021-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明