參考文獻 |
Alter, H., 1996. The Recycling of Densified Refuse-Derived Fuel. Waste Management & Research, 14, 311–317.
Aydar, E., Gul, S., Unlu, N., Akgun, F., Livatyali, H., 2014. Effect of the type of gasifying agent on gas composition in a bubbling fluidized bed reactor. Journal of the Energy Institute, 87, 35–42.
Baumbach, G., Hartmann, H., Höfer, I., Hofbauer, H., 2016. Grundlagen der thermo-chemischen Umwandlung biogener Festbrennstoffe. Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 579–814.
Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L., 2013. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal of Cleaner Production, 55, 10–23.
Caputo, A. C., Pelagagge, P. M., 2002. RDF production plants: I Design and costs. Applied Thermal Engineering, 22, 423–437.
Chang, J. E., Jung, L., 2011. Evolution and prospect of 100 years of ROC-environmental science and technology. Journal of science development, 457, 103–108.
Chiang, K. Y., Lu, C. H., Liao, C. K., Ger, R. H. R., 2016. Characteristics of hydrogen energy yield by co-gasified of sewage sludge and paper-mill sludge in a commercial scale plant. International Journal of Hydrogen Energy, 41, 21641–21648.
Chiou, I. J., Chen, C. H., Lin, Y. S., 2014. Combustion behavior and optimal proportion of industrial sludge‐derived fuels. Environmental Progress & Sustainable Energy, 33, 1000–1007.
Cho, S. J., Jung, H. Y., Seo, Y. C., Kim, W. H., 2010. Studies on Gasification and Melting Characteristics of Automobile Shredder Residue. Environmental Engineering Science, 27, 577–586.
Cossu, R., Lai, T., 2015. Automotive shredder residue (ASR) management: An overview. Waste Management, 45, 143–151.
Marcello, M. D., Tsalidis, G. A., Spinelli, G., Jong, W., Kiel, J. H. A., 2017. Pilot scale steam-oxygen CFB gasification of commercial torrefied wood pellets. The effect of torrefaction on the gasification performance. Biomass and Bioenergy, 105, 411–420.
Donaj, P., Blasiaka, W., Yanga, W., Forsgren, C., 2011. Conversion of microwave pyrolysed ASR’s char using high temperature agents. Journal of Hazardous Materials, 185, 472–481.
Fiore, S., Ruffino, B., Zanetti, M. C., 2012. Automobile Shredder Residues in Italy: Characterization and valorization opportunities. Waste Management, 32, 1548–1559.
Fujimori, T., Takaoka, M., 2009. Direct Chlorination of Carbon by Copper Chloride in a Thermal Process. Environmental Science & Technology , 43, 7, 2241–2246.
González-Vázquez, M. P., García, R., Gil, M. V., Pevida, C., Rubiera, F., 2018. Comparison of the gasification performance of multiple biomass types in a bubbling fluidized bed. Energy Conversion and Management, 176, 309–323.
He, J., Yang, Z., Xiong, S., Guo, M., Yan, Y., Ran, J., Zhang, L.,2020. Experimental and thermodynamic study of banana peel non-catalytic gasification characteristics. Waste Management, 113, 369–378.
Hofbauer, H., Materazzi, M., 2019. Waste gasification processes for SNG production. Substitute natural gas from waste, 106–156.
Horii, M., Iida, S., 2001.Gasification and dry distillation of automobile shredder residue (ASR). JSAE Review, 22, 63–68.
Jayaraman, K., Kok, M. V., Gokalp, I., 2017. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends. Renewable Energy, 101, 293–300.
Jewell, J., 2011. The IEA model of short-term energy security(MOSES).
Karl, J., Pröll, T., 2018. Steam gasification of biomass in dual fluidized bed gasifiers: A review. Renewable and Sustainable Energy Reviews, 98, 64–78.
Khodier, A., Williams, K., Dallison, N., 2018. Challenges around automotive shredder residue production and disposal. Waste Management, 73, 566–573.
Khosasaeng, T., Suntivarakorn, R., 2017. Effect of equivalence ratio on an efficiency of single throat downdraft gasifier using RDF from municipal solid waste. Energy Procedia, 138, 784–788.
Kihedu, J. H., Yoshiie, R., Naruse, I., 2016. Performance indicators for air and air–steam auto-thermal updraft gasification of biomass in packed bed reactor. Fuel Processing Technology, 141, 93–98.
Kondoh, M., Hamai, M., Yamaguchi, M., Mori, S., 2001. Study of gasification characteristics of automobile shredder residue. JSAE review, 22, 221–236.
Kong, L., Hasanbeigi, A., Price, L., 2016. Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. Journal of Cleaner Production, 122, 5–28.
Lee, J. M., Kim, D. W., Kim, J. S., Na, J. G., Lee, S. H., 2010. Co-combustion of refuse derived fuel with Korean anthracite in a commercial circulating fluidized bed boiler′, Energy, 35, 2814–2818.
Lin, C., Zhang, J., Zhao, P., Wang, Z., Yang, M., Cui, X., Tian, H., Guo, Q., 2020. Gasification of real MSW-derived hydrochar under various atmosphere and temperature. Thermochimica Acta, 683, 178470.
Lin, K. S., Chowdhury, S., Wang, Z. P., 2010. Catalytic gasification of automotive shredder residues with hydrogen generation. Journal of Power Sources, 195, 6016–6023.
Mallampati, S. R., Lee, B . H., Mitoma, Y., Simion, C., 2017. Selective sequential separation of ABS/HIPS and PVC from automobile and electronic waste shredder residue by hybrid nano-Fe/Ca/CaO assisted ozonisation process. Waste Management, 60, 428–438.
Maric, J., Vilches, T. B., Pissot, S., Vela, I. C., Gyllenhammar, M., Seemann, M., 2020. Emissions of dioxins and furans during steam gasification of Automotive Shredder residue; experiences from the Chalmers 2–4-MW indirect gasifier. Waste Management, 102, 114–121.
Mayyas, M., Pahlevani, F., Handoko, W., Sahajwalla, V., 2016. Preliminary investigation on the thermal conversion of automotive shredder residue into value-added products: Graphitic carbon and nano-ceramics. Waste Management, 50, 173–183.
Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry, 25, 10–25.
Molino, A., Larocca, V., Chianese, S., Musmarra, D., 2018. Biofuels production by biomass gasification: A review. Energies, 11, 811.
Monte, M. C., Fuente, E., Blanco, A., Negro, C., 2009. Waste management from pulp and paper production in the European Union. Waste Management, 29, 293–308.
Nam, H., Wang, S., Sanjeev, K.C., Seo, M. W., Adhikari, S., Shakya, R., 2020.
Enriched hydrogen production over air and air-steam fluidized bed gasification in a bubbling fluidized bed reactor with CaO: Effects of biomass and bed material catalyst . Energy Conversion and Management, 225, 113408.
Ni, F., Chen, M., 2014. Studies on pyrolysis and gasification of automobile shredder residue in China. Waste management & research, 32, 980–987.
Ouadi, M., Brammer, J.G., Kay, M., Hornung, A., 2013. Fixed bed downdraft gasification of paper industry wastes. Applied Energy, 103, 692–699.
Passarini, F., Ciacci, L., Santini, A., Vassura, I., Morselli, L., 2012. Auto shredder residue LCA: implications of ASR composition evolution. Journal of Cleaner Production, 23, 28–36.
Prabu, S., Chiang, K. Y., 2021. Magnetically recyclable Co/ZnO@NiFe2O4 nanoparticles as highly active and reusable catalysts for hydrazine monohydrate hydrogen generation. Catalysis Science & Technology, 11, 1544–1557.
Raboni, M., Torretta, V., Urbini, G., Viotti, P., 2015. Automotive shredder residue: A survey of the hazardous organic micro-pollutants spectrum in landfill biogas. Waste management & research, 33, 48–54.
Automotive shredder residue: A survey of
the hazardous organic micro-pollutants
spectrum in landfill biogas
Automotive shredder residue: A survey of
the hazardous organic micro-pollutants
spectrum in landfill biogas
Ren, J., Cao, J. P., Zhao, X. Y., Yang, F. L., Wei, X. Y., 2019. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renewable and Sustainable Energy Reviews, 116, 109426.
Rivera, J. A., López, V. P., Casado, R. R., Hervás, J. M. S., 2016. Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Characterization and gasification test. Waste Management, 47, 225–235.
Ruffino, B., Fiore, S., Zanetti, M. C., 2014. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: Results and cost assessment. Waste Management, 34, 148–155.
Sakai, S., Yoshida, H., Hiratsuka, J., Vandecasteele, C., Kohlmeyer, R., 2014. An international comparative study of end-of-life vehicle (ELV) recycling systems. J Mater Cycles Waste Manag, 16, 1–20.
Sato, F. E. K., Furubayashi, T., Nakata, T., 2019. Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan. Applied energy, 237, 779–794.
Schmid, A., Naquin, P., Gourdonc, R., 2013. Incidence of the level of deconstruction on material reuse, recycling and recovery from end-of life vehicles: an industrial-scale experimental study. Resources, Conservation and Recycling, 72, 118–126.
Serrano, D., Kwapinska, M., Horvat, A., Sánchez-Delgado, S., Leahy, J. J., 2016. Cynara cardunculus L. gasification in a bubbling fluidized bed: The effect of magnesite and olivine on product gas, tar and gasification performance. Fuel, 173, 247–259.
Sheng, H. P., Alter. H., 1975. Energy recovery from municipal solid waste and method of comparing refuse-derived fuels. Resource recovery and conservation, 1, 85–93.
Shin, D., Jang, S., Hwang, J., 2005. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed. Waste Management, 25, 680–685.
Simic, V., Dimitrijevic, B., 2013. Modelling of automobile shredder residue recycling in the Japanese legislative context. Expert systems with applications, 40, 7159–7167.
Singh, R. I., Brink, A., Hupa, M., 2013. CFD modeling to study fluidized bed combustion and gasification. Applied Thermal Engineering, 52, 585–614.
Susastriawan, A. A. P., Saptoadi, H., Purnomo, 2017. Small-scale downdraft gasifiers for biomass gasification: A review. Renewable and Sustainable Energy Reviews, 76, 989–1003.
Tai, H. S., Liu, C. M., Wu, Y. J., 2007. Dechlorination of auto shredder residues. Journal of Hazardous Materials, 142, 305–307.
Tai, H. S., He, W. H., 2015. An exploration of automotive shredder residue recovery as fuel in Taiwan. Journal of the Chinese Institute of Engineers, 38, 675–684.
Tchobanoglous, G., Theisen, H., Vigil, S., 1993. Integrated solid waste management: engineering principles and management issues.
Thakkar, M., Makwana, J. P., Mohanty, P., Shah, M., Singh, V., 2016. In bed catalytic tar reduction in the autothermal fluidized bed gasification of rice husk: Extraction of silica, energy and cost analysis. Industrial Crops and Products, 87, 324–332.
Thomson, R., Kwong, P., Ahmad, E., Nigam, K.D.P., 2020. Clean syngas from small commercial biomass gasifiers; a review of gasifier development, recent advances and performance evaluation. International Journal of Hydrogen Energy, 45, 21087–21111.
Trubetskaya, A., Beckmann, G., Wadenbäck, J., Holm, J. K., Velaga, S. P., Weber, R., 2017. One way of representing the size and shape of biomass particles in combustion modeling. Fuel, 206, 675–683.
Urbini, G., Viotti, P., Gavasci, R., 2014. Attenuation of methane, PAHs and VOCs in the soil covers of an automotive shredded residues landfill: A case study. Journal of Chemical and Pharmaceutical Research, 6(11),618–625.
Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Fiedler, H., 2006. The 2005 World Health Organization Reevaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-Like Compounds. Toxicological Sciences, 93, 2, 223–241.
Vigano, F., Consonni, S., Grosso, M., Rigamonti, L., 2010. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion. Waste management, 30, 145–153.
Wu, J. L., Lin, T. C., Wang, Y. F., Wang, J. W., Wang, C. T., Kuo, Y. M., 2014. Polychlorinated Dibenzo-p-dioxin and Dibenzofuran (PCDD/F) Emission Behavior during Incineration of Laboratory Waste. Part 1: Emission Profiles Obtained Using Chemical Assay and Bioassay. Aerosol and Air Quality Research, 14, 1199–1205.
Weiland, F., Lundin, L., Celebi, M., Vlist, K., Moradian, F., 2021. Aspects of chemical recycling of complex plastic waste via the gasification route. Waste Management, 126, 65–77.
Xie, Y., Yang, H., Zeng, K., Zhu, Y., Hu, J., Mao, Q., Liu, Q., Chen, H., 2019. Study on CO2 gasification of biochar in molten salts: reactivity and structure evolution. Fuel, 254, 115614.
Xiong, S., He, J., Yang, Z., Guo, M., Yan, Y., Ran, J., 2020. Thermodynamic analysis of CaO enhanced steam gasification process of food waste with high moisture and low moisture. Energy, 194, 116831.
Yahaya, A. Z., Somalu, M. R., Muchtar, A., Sulaiman, S. A., Daud, W. R. W., 2019. Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor. Energy, 175, 931–940.
Yii, B. L. S., Ismail, W. M. S. W., Yahya, F. N., Rasid, R. A., 2019. The Effect of Operating Temperature and Equivalence Ratio in an Entrained Flow Gasification of EFB. Materials Today: Proceedings, 19, 1373–1381.
Zhang, L. , Xu, C., Champagne, P., 2010. Energy recovery from secondary pulp/paper-mill sludge and sewage sludge with supercritical water treatment. Bioresource technology, 101, 2713–2721.
Zhao, Q., Chen, M., 2011. A comparison of ELV recycling system in China and Japan and China’s strategies. Resources, Conservation and Recycling, 57, 15–21.
Zhu, H. L., Zhang, Y. S., Materazzi, M., Aranda, G., Brett, D. J. L., Shearing, P. R., Manos, G., 2019. Co-gasification of beech-wood and polyethylene in a fluidized-bed reactor. Fuel Processing Technology, 190, 29–37.
鄭釋緣,江康鈺,應用自製催化劑評估廢車破碎殘餘物氣化重金屬排放特性,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。
羅勻聘,江康鈺,呂佳明,黃永吉,張木彬,漿紙污泥與廢車破碎殘餘物 共同氣化產能評估與污染物排放特性建立之實廠驗證研究,中華民 國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
行政院環境保護署,環境資源資料庫應回收廢棄物回收量資料,網址: https://data.epa.gov.tw/dataset/wr_p_222/resource/7085ccfc-5682- 4e29-b34e-4fedf1936c0f,網頁擷取日期:2021年4月。
吳宜璁,產業污泥衍生燃料的製造特性與燃燒行為研究,碩士論文,桃園創新技術學院材料應用科技研究所,桃園,2014。 |