博碩士論文 107326014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.219.127.59
姓名 廖家儀(Chia-Yi Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 多層複合濾料水質淨化系統–鐵的角色與磷酸鹽去除機制之研究
(The role of iron and phosphate removal mechanism in multi-soil-layering system)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-1以後開放)
摘要(中) 磷酸鹽從自然環境或污水中釋放至河川、湖泊、水庫等水體,會導致水質優養化的問題。多層複合濾料水質淨化系統(multi-soil-layering system, MSL)是一種現地污水處理技術,對於鄉村偏遠地區具有應用潛力,且能有效去除污水中的有機物與營養鹽。雖然此技術已成功地應用於世界上的許多國家,如:日本、泰國、印尼,但MSL系統去除磷酸鹽的機制還未被完全理解。
本研究探討初始磷酸鹽濃度、曝氣、微生物以及添加鐵對於MSL系統去除磷酸鹽的影響,使用large pilot MSL (L-MSL)系統與benchtop-MSL (B-MSL)系統進行實驗。為了清楚理解各參數對於去除磷酸鹽的貢獻,實驗採用砂替代混合土磚包中的土壤,配製合成污水,以減少其他參數如:土壤中的有機物、微生物、污水中的其他物質對於去除磷酸鹽造成的影響;另外也將混合土磚包與出流水中的鐵物質做進一步的分析與討論。
添加鐵粒能在MSL系統中提升固定磷酸鹽的效果,但是在缺乏微生物與有機物的條件下,出流水中的磷酸鹽濃度隨著時間明顯上升。而在含鐵的MSL系統中添加微生物、葡萄糖的組別,在運作的40天中,磷酸鹽的濃度穩定維持在0.05 mg-P/L以下。在pH值於6.5 – 8的範圍下,MSL系統中主要以纖鐵礦、磁鐵礦、磁赤鐵礦的形態存在,且有部分氧化鐵會結晶在砂的表面;在B-MSL6運作約一周後,釋出的鐵濃度逐漸上升,並觀察到出流水中有奈米磁赤鐵礦的沉澱。總體而言,MSL系統在添加鐵、有機物、微生物的條件下,去除磷酸鹽的效能良好,推測微生物與有機物可能有助於系統中磷酸鹽的去除,或是能與鐵、磷酸鹽共同作用提升MSL系統固定污水中磷酸鹽的效果。
摘要(英) Release of phosphate from environment or wastewater can undermine water quality and cause eutrophication in lakes, rivers and reservoirs. Multi-soil layering (MSL) system as an attractive technology for rural area can effectively treat organic contaminants and nutrients in wastewater. Although it has been successfully applied in Japan, Thailand and Indonesia, the mechanism of phosphate removal in MSL system have not been fully understand.
In this research, the effects of concentration, aeration, microorganisms and addition of iron on the performance of phosphate removal in MSL system were investigated using large pilot MSL system (L-MSL) and benchtop-scale MSL system (B-MSL). To clearly understand the contribution of factors, the filling media was prepared sand instead of local soil in soil mixture blocks, and synthetic wastewater was prepared as the influent in experiments. In addition, the species of iron in soil mixture blocks and in effluent were unveiled. The iron beads in MSL system provide a major contribution to fix phosphate in MSL system. However, the phosphate concentration in effluent gradually increased with time in B-MSL without microorganisms and organic matters. In contrast, the MSL system with addition of microorganisms and organic matters stably maintained the phosphate concentration below 0.05 mg-P/L in effluent under 40 days of operation. Maghemite, lepidocrocite, magnetite are major iron oxides in MSL system in the pH range of 6.5 to 8, and a portion of them form crystallization coating on the surface of sand. Release of iron concentration had gradually increased after operation for a week in B-MSL6, and the nanoscale particles of maghemite were found in the effluent. Overall, MSL system with addition of iron, microorganisms and organic matters has effective performance on phosphate removal. The organic matter and microorganisms could assist iron to fix phosphate in MSL system.
關鍵字(中) ★ 多層複合濾料水質淨化系統
★ 磷酸鹽
★ 鐵
★ 微生物
關鍵字(英) ★ multi-soil-layering system
★ phosphate
★ iron
★ microorganism
論文目次 摘要 I
Abstract III
誌謝 V
Content VI
List of Figures X
List of Tables XIII
Chapter 1 Introduction 1
1.1. Background 1
1.2. Objective 3
Chapter 2 Literature Reviews 5
2.1. Multi-soil-layering system (MSL) 5
2.1.1. The advantages and function of MSL system 5
2.1.2. The structure and materials of MSL system 6
2.1.3. The mechanism of MSL system 9
2.1.4. Recent development of application in MSL system 14
2.2. The performance and operating factors in MSL system 15
2.2.1. The phosphate removal efficiency in MSL systems 15
2.2.2. Hydraulic loading 18
2.2.3. Aeration 21
2.2.4. Microorganisms and addition of carbon sources 24
2.3. The interaction between phosphate and iron compounds 28
2.3.1. The phosphates in aqueous solution 28
2.3.2. The iron compounds 29
2.3.3. The interaction between iron oxides and phosphate 31
2.3.4. The expected productions of iron oxides in MSL system 34
2.4. The effects of humic substances on phosphate adsorption by iron 35
Chapter 3 Materials and Methods 37
3.1. Large pilot MSL system 38
3.1.1. The materials and structure of the large pilot MSL system 39
3.1.2. Operation of L-MSL without microorganisms 39
3.2. Benchtop-scale MSL system 42
3.2.1. The composition of materials and structure 44
3.2.2. Operation of B-MSL without microorganisms 46
3.2.3. Operation of B-MSL with microorganisms 48
3.3. Adsorption of phosphate by MSL materials 49
3.3.1. Removal of phosphate by various materials in MSL system 49
3.3.2. Effects of soaking time with iron beads to removal efficiency 50
3.4. Characterization of packing materials and water analysis 51
Chapter 4 Results and Discussion 54
4.1. Removal of phosphate in MSL 54
4.1.1. The effects of concentration and hydraulic loading rate on the removal of phosphorus by large pilot MSL system 54
4.1.2. The effects of concentration on the removal of phosphate in B-MSL without microorganisms 56
4.1.3. The effects of aeration in MSL without microorganisms 61
4.2. Role of microorganisms in removal of phosphate 63
4.3. Role of iron in MSL 69
4.3.1. Possible iron oxides in MSL system 69
4.3.2. The iron in L-MSL and B-MSL 71
4.3.3. The iron in effluent of B-MSL6 79
4.4. Removal of nitrogen in MSL system 84
4.4.1. Effects of physiochemical process for nitrogen species removal in MSL system 84
4.4.2. Role of microorganisms in removal of nitrogen species 87
4.5. The filling medias in MSL 91
4.5.1. The phosphate adsorption capacity of filling medias in MSL 91
4.5.2. Comparison of adsorbed amount of phosphate on rusty and new iron beads 93
Chapter 5 Conclusions and Suggestions 95
5.1. Conclusions 95
5.2. Suggestions 97
Reference 98
參考文獻 An, C. J., E. McBean, G. H. Huang, Y. Yao, P. Zhang, X. J. Chen and Y. P. Li "Multi-soil-layering systems for wastewater treatment in small and remote communities." Journal of Environmental Informatics 27(2), 131-144(2016).

Attanandana, T., B. Saitthiti, S. Thongpae, S. Kritapirom, S. Luanmanee and T. Wakatsuki "Multi-media-layering system for food service wastewater treatment." Ecological Engineering 15(1-2), 133-138(2000).

Bhanage, M. A. B. D. U. T. S. D. N.-H. B. M. "Magnetically separable γ-Fe2O3 nanoparticles: An efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition." Journal of Molecular Catalysis A: Chemical 404–405, 8-17(2015).

Boonsook, P., S. Luanmanee, T. Attanandana, A. Kamidouzono, T. Masunaga and T. Wakatsuki "A comparative study of permeable layer materials and aeration regime on efficiency of multi-soil-layering system for domestic wastewater treatment in Thailand." Soil Science and Plant Nutrition 49(6), 873-882(2003).

Bruce E. Rittmann, P. L. M. "Environmental Biotechnology: Principles and Applications". New York, McGraw-Hill. (2001).

Celi, L., M. Prati, G. Magnacca, V. Santoro and M. Martin "Role of crystalline iron oxides on stabilization of inositol phosphates in soil." Geoderma 374, 114442(2020).

Chen, X., A. C. Luo, K. Sato, T. Wakatsuki and T. Masunaga "An introduction of a multi-soil-layering system: a novel green technology for wastewater treatment in rural areas." Water and Environment Journal 23(4), 255-262(2009).

Cornell, U. S. R. M. "Iron Oxides in the Laboratory". Weinheim, WILEY-VCH. (2000).

Daou, T. J., S. Begin-Colin, J. M. Greneche, F. Thomas, A. Derory, P. Bernhardt, P. Legare and G. Pourroy "Phosphate adsorption properties of magnetite-based nanoparticles." Chemistry of Materials 19(18), 4494-4505(2007).

Gerke, J. "Humic (organic matter)-Al(Fe)-phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate." Soil Science 175(9), 417-425(2010).

Gerke, J. and R. Hermann "Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide " Zeitschrift Fur Pflanzenernahrung Und Bodenkunde 155(3), 233-236(1992).

Guan, Y. D., X. Chen, S. Zhang and A. C. Luo "Performance of multi-soil-layering system (MSL) treating leachate from rural unsanitary landfills." Science of the Total Environment 420, 183-190(2012).

Guan, Y. D., D. F. Xu, X. Chen, A. C. Luo, H. Fang and Y. Z. Song "Flow patterns of multi-soil-layering systems." Desalination and Water Treatment 52(22-24), 4165-4169(2014).

Guan, Y. D., Y. Zhang, C. N. Zhong, X. F. Huang, J. Fu and D. Y. Zhao "Effect of operating factors on the contaminants removal of a soil filter: multi-soil-layering system." Environmental Earth Sciences 74(3), 2679-2686(2015).

Guo, J. Y., Y. L. Zhou, S. L. Jiang and C. Chen "Feasibility investigation of a multi soil layering bioreactor for domestic wastewater treatment." Environmental Technology 40(17), 2317-2324(2019).

Guo, J. Y., Y. L. Zhou, Y. J. Yang, C. Chen and J. J. Xu "Effects of hydraulic loading rate on nutrients removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactor." International Journal of Environmental Research and Public Health 15(12), 2688(2018).



Haruta, S., T. Takahashi and T. Nishiguchi "Basic studies on phosphorus removal by the contact aeration process using iron contactors." Water Science and Technology 23(4-6), 641-650(1991).

Ho, C. C. and P. H. Wang "Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials." International Journal of Environmental Research and Public Health 12(3), 3362-3380(2015).

James, B. R., M. C. Rabenhorst and G. A. Frigon "Phosphorus sorption by peat and sand amended with iron oxides or steel wool." Water Environment Research 64(5), 699-705(1992).

Kim, J., W. Li, B. L. Philips and C. P. Grey "Phosphate adsorption on the iron oxyhydroxides goethite (alpha-FeOOH), akaganeite (beta-FeOOH), and lepidocrocite (gamma-FeOOH): a P-31 NMR Study." Energy & Environmental Science 4(10), 4298-4305(2011).

Koottatep, T., T. Pussayanavin, S. Khamyai and C. Polprasert "Performance of novel constructed wetlands for treating solar septic tank effluent." Science of the Total Environment 754, 142447(2021).

Kozin, P. A., G. Salazar-Alvarez and J. F. Boily "Oriented aggregation of lepidocrocite and impact on surface charge development." Langmuir 30(30), 9017-9021(2014).

Latrach, L., T. Masunaga, N. Ouazzani, A. Hejjaj, M. Mahi and L. Mandi "Removal of bacterial indicators and pathogens from domestic wastewater by the multi-soil-layering (MSL) system." Soil Science and Plant Nutrition 61(2), 337-346(2015).

Latrach, L., N. Ouazzani, A. Hejjaj, F. Zouhir, M. Mahi, T. Masunaga and L. Mandi "Optimization of hydraulic efficiency and wastewater treatment performances using a new design of vertical flow Multi-Soil-Layering (MSL) technology." Ecological Engineering 117, 140-152(2018).
指導教授 秦靜如 審核日期 2021-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明