博碩士論文 106083601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:3.139.69.53
姓名 阮文安(Nguyen Van An)  查詢紙本館藏   畢業系所 環境科技博士學位學程
論文名稱 南海淺海區衛星測深和底棲生境圖
(SATELLITE-DERIVED BATHYMETRY AND BENTHIC HABITAT MAPPING IN SHALLOW AREA OF SOUTH CHINA SEA)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-8-20以後開放)
摘要(中) 海底地形資訊是改善底棲環境分類結果的關鍵因素。然而,獲取水深資訊並不容易且費用高,尤其是在偏遠島嶼。 ICESat-2 是一個衛載 LiDAR ,可提供含有地理位置的高度資訊,進而解決近岸地區測深的挑戰。在這項研究中,我們提出以ICESat-2 數據與光學影像結合的演算法,以擴展衛星測深的應用。在我們的實驗中選擇南中國海的五個島嶼地區,利用光譜特徵根據目標島嶼底棲物質的異質性分類進行並分析評估。結果顯示ICESat-2 和 Sentinel-2 影像的結合,判定係數可以達到0.75-0.95,且均方根誤差在 0.66-1.87 m,這五個區域的最深估計到 19-32 m。 本研究也提出使用PlanetScope 衛星影像和ICESat-2 數據同時進行水深估計和底棲分類。 利用深度不變指數(Depth Invariant Index, DII)和海底反射指數(Bottom Reflectance Index, BRI)來減少水體的影響,再採用機器學習算法,包括隨機森林 (Random Forest, RF)、支持向量機 (Support Vector Machine, SVM) 和卷積神經網絡 (Convolutional Neural Network, CNN) 來分類底棲物質。 此三個分類法的總體準確率於BRI 分別為 79.02%、83.05% 和 86.49%,而 DII分別為 79%、82.75%、84.2%。 成果清楚地展示水深資訊在分類中的重要性,此外CNN方法可以得到最佳的底棲分類結果。
摘要(英) Bathymetry information is a critical factor in improving the classification results of benthic habitats. However, obtaining the bathymetry data is not always easy and affordable, especially in remote islands. ICESat-2 is a space-borne LiDAR satellite that provides geolocated photon height that can resolve the challenges in bathymetric mapping in the nearshore region. In this study, the combination of ICESat-2 data with optical images is developed to extend the application of satellite-derived bathymetry (SDB). Five islands in different parts of the South China Sea are selected, analyzed, and evaluated in our proposed model. The clustering step is used to address the heterogeneity of benthic habitats by dividing the target islands into groups based on spectral characteristics. The results show that an integration of ICESat-2 and Sentinel-2 imageries can achieve R2 at 0.75–0.95 and RMSE at 0.66–1.87 m with the deepest pixels at 19–32 m across these five islands.
This study also proposed a completed scheme for bathymetry estimation and integration of benthic classification using the PlanetScope satellite image and ICESat-2 data for the coastal region. Depth invariant index (DII) and bottom reflectance index (BRI) were utilized to reduce the water column′s effect. Moreover, two conventional machine learning algorithms including Random Forest (RF), Support Vector Machine (SVM) and a current deep convolutional neural network (CNN) were employed to address the benthic features. The overall accuracy of the three classifiers are 79.02%, 83.05%, and 86.49% with BRI compared to 79%, 82.75%, 84,2% of DII, respectively. These results clearly emphasize the importance of bathymetry information in the classification procedure. Moreover, the CNN approach can maximize the improvement in the benthic classification results in the coastal region.
關鍵字(中) ★ Planet Scope
★ Sentinel-2
★ ICESat-2
★ 測深
關鍵字(英) ★ Planet Scope
★ Sentinel-2
★ ICESat-2
★ benthic habitat
★ bathymetry
★ convolutional neural network
論文目次 Table of Contents
Abstract: i
List of Figures iv
List of Table vi
CHAPTER I: INTRODUCTION 1
1.1 Research background and motivation 1
1.2 Research aim and objectives 5
1.3 The workflow of research 6
1.4 Dissertation outline 7
CHAPTER II: OPTICAL IMAGE PRE-PROCESSING 8
2.1 Absolute Atmospheric Correction 8
2.1.1 Absorption Terms 9
2.1.2 Scattering Terms 10
2.2 Deep-Water Correction 10
CHAPTER III: EXTRACT ICESAT-2 BATHYMETRY AND BATHYMETRY ESTIMATION 12
3.1 ICESat-2 Bathymetry 12
3.1.1 ICESat-2 Surface Finding 12
3.1.2 Validation of ICESat-2 Elevation Profile 14
3.2 Bathymetry model 15
3.2.1 Multiple Linear Regression (MLR) 16
3.2.2 Ratio Transform (RT) 16
CHAPTER IV: BENTHIC HABITAT CLASSIFICATION 17
4.1 Water column correction 17
4.2 Image Classification 18
CHAPTER V: EXPERIMENTAL RESULTS 20
5.1 Estimate bathymetry in the shallow region of South China Sea 20
5.1.1 Study Area and Data Sources 20
5.1.2 Results and discussion 25
5.2 Estimate bathymetry and benthic habitat mapping in Lyson Island, middle of Vietnam 34
5.2.1 Study Area and Data Source 34
5.2.2 Results and Discussion 41
CHAPTER VI: CONCLUSIONS AND FUTURE PERSPECTIVE 55
6.1 Conclusion 55
6.2 Future Work 57
REFERENCE 60
參考文獻 REFERENCE
1. Thornes, J., IPCC, 2001: Climate change 2001: impacts, adaptation and vulnerability, Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by J. J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken and K. S. White (eds). Cambridge University Press, Cambridge, UK, and New York, USA, 2001. Vol. 22. 2002.
2. Salameh, E., et al., Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sensing, 2019. 11(19).
3. Hughes, T., H. Huang, and M. Young, The Wicked Problem of China′s Disappearing Coral Reefs. Conservation biology : the journal of the Society for Conservation Biology, 2012. 27.
4. Benveniste, J., et al., Requirements for a Coastal Hazards Observing System. Frontiers in Marine Science, 2019. 6(348).
5. Green, E.P., Remote Sensing Handbook for Tropical Coastal Management. 2000.
6. Eugenio, F., J. Marcello, and J. Martin, High-Resolution Maps of Bathymetry and Benthic Habitats in Shallow-Water Environments Using Multispectral Remote Sensing Imagery. IEEE Transactions on Geoscience and Remote Sensing, 2015. 53(7): p. 3539-3549.
7. Hedley, J., et al., Remote Sensing of Coral Reefs for Monitoring and Management: A Review. Remote Sensing, 2016. 8(2).
8. Li, J., et al., Object-Based Mapping of Coral Reef Habitats Using Planet Dove Satellites. Remote Sensing, 2019. 11(12).
9. Stolt, M., et al., Mapping Shallow Coastal Ecosystems: A Case Study of a Rhode Island Lagoon. Journal of Coastal Research, 2011. 27: p. 1-15.
10. Wicaksono, P. and W. Lazuardi, Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. International Journal of Remote Sensing, 2018. 39(17): p. 5739-5765.
11. Andréfouët, S., et al., Multi-Scale Remote Sensing of Coral Reefs. 2008. p. 297-315.
12. Mishra, D., et al., Benthic Habitat Mapping in Tropical Marine Environments Using QuickBird Multispectral Data. Photogrammetric Engineering & Remote Sensing, 2006. 72: p. 1037-1048.
13. Strong, A., et al., Identifying coral bleaching remotely via Coral Reef Watch-Improved integration and implications for changing climate. 2006. p. 163-180.
14. Maritorena, S., A. Morel, and B. Gentili, Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnology and Oceanography, 1994. 39: p. 1689-1703.
15. Lee, Z., et al., Hyperspectral remote sensing for shallow waters. I. A semianalytical model. Applied Optics, 1998. 37(27): p. 6329-6338.
16. Lee, Z., et al., Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data. Journal of Geophysical Research: Oceans, 2001. 106(C6): p. 11639-11651.
17. Klonowski, W., P. Fearns, and M. Lynch, Retrieving key benthic cover types and bathymetry from hyperspectral imagery. Journal of Applied Remote Sensing, 2007. 1.
18. Brando, V., et al., A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data. Remote Sensing of Environment, 2009. 113: p. 755-770.
19. Lee, Z., et al., Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization. Applied Optics, 1999. 38(18): p. 3831-3843.
20. Mobley, C., et al., Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. Applied optics, 2005. 44: p. 3576-92.
21. Hedley, J.D., C. Roelfsema, and S. Phinn, Efficient radiative transfer model inversion for remote sensing applications. Remote Sensing of Environment, 2009. 113: p. 2527-2532.
22. Ashphaq, M., P.K. Srivastava, and D. Mitra, Review of nearshore satellite derived bathymetry: classification and account of five decades of coastal bathymetry research. Journal of Ocean Engineering and Science, 2021.
23. Lyzenga, D.R., Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data. International Journal of Remote Sensing, 1981. 2(1): p. 71-82.
24. Louchard, E., et al., Optical Remote Sensing of Benthic Habitats and Bathymetry in Coastal Environments at Lee Stocking Island, Bahamas: A Comparative Spectral Classification Approach. Limnology and Oceanography - LIMNOL OCEANOGR, 2003. 48: p. 511-521.
25. Andréfouët, S., et al., Multi-site evaluation of IKONOS data for classification of tropical coral reef environments. Remote Sensing of Environment, 2003. 88(1-2): p. 128-143.
26. Wicaksono, P., P.A. Aryaguna, and W. Lazuardi, Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning Classification Algorithms. Remote Sensing, 2019. 11(11).
27. Mumby, P.J., et al., Benefits of water column correction and contextual editing for mapping coral reefs. International Journal of Remote Sensing, 1998. 19(1): p. 203-210.
28. Sagawa., T., et al., A NEW APPLICATON METHOD FOR LYZENGA’S OPTICAL MODEL. International Journal of Remote Sensing, 2010.
29. Zoffoli, M.L., R. Frouin, and M. Kampel, Water column correction for coral reef studies by remote sensing. Sensors (Basel), 2014. 14(9): p. 16881-931.
30. Yeu, Y., et al., Evaluation of the Accuracy of Bathymetry on the Nearshore Coastlines of Western Korea from Satellite Altimetry, Multi-Beam, and Airborne Bathymetric LiDAR. Sensors, 2018. 18(9): p. 2926.
31. Mason, D.C., C. Gurney, and M. Kennett, Beach topography mapping—a comparsion of techniques. Journal of Coastal Conservation, 2000. 6(1): p. 113-124.
32. Lyzenga, D.R., Shallow-water bathymetry using combined lidar and passive multispectral scanner data. International Journal of Remote Sensing, 1985. 6(1): p. 115-125.
33. Stumpf, R.P., K. Holderied, and M. Sinclair, Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr, 2003.
34. Vinayaraj, P., V. Raghavan, and S. Masumoto, Satellite-Derived Bathymetry using Adaptive Geographically Weighted Regression Model. Marine Geodesy, 2016. 39(6): p. 458-478.
35. Lyzenga, D.R., Passive remote sensing techniques for mapping water depth and bottom features. APPLIED OPTICS, 1978. Vol. 17, No. 3.
36. Lyzenga, D.R., N.P. Malinas, and F.J. Tanis, Multispectral bathymetry using a simple physically based algorithm. IEEE Transactions on Geoscience and Remote Sensing, 2006. 44(8): p. 2251-2259.
37. Kanno, A., Y. Tanaka, and M. Sekine, Validation of shallow-water reflectance model for remote sensing of water depth and bottom type by radiative transfer simulation. Journal of Applied Remote Sensing, 2013. 7(1).
38. Gholamalifard, M., et al., Bathymetric Modeling from Satellite Imagery via Single Band Algorithm (SBA) and Principal Components Analysis (PCA) in Southern Caspian Sea. International Journal of Environmental Research, 2013. 7: p. 877-886.
39. Misra, A., et al., Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery. International Journal of Remote Sensing, 2018. 39(13): p. 4431-4450.
40. Sagawa, T., et al., Satellite Derived Bathymetry Using Machine Learning and Multi-Temporal Satellite Images. Remote Sensing, 2019. 11(10).
41. Neumann, T.A., et al., ICE, CLOUD, and Land Elevation Satellite-2 (ICESat-2) Project: Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons: ATL03. National Aeronautics and Space Administration, Goddard Space Flight Center. 2019.
42. Neumann, T.A., et al., ATLAS/ICESat-2 L2A Global Geolocated Photon Data, Version 1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. 2019.
43. NASA. National Snow and Ice Data Center. 2021 [cited 2021; Available from: https://nsidc.org/.
44. Forfinski-Sarkozi, N. and C. Parrish, Analysis of MABEL Bathymetry in Keweenaw Bay and Implications for ICESat-2 ATLAS. Remote Sensing, 2016. 8(9).
45. Jasinski, M.F., et al., Inland and Near-Shore Water Profiles Derived from the High-Altitude Multiple Altimeter Beam Experimental Lidar (MABEL). Journal of Coastal Research, 2016. 76: p. 44-55.
46. Parrish, C.E., et al., Validation of ICESat-2 ATLAS Bathymetry and Analysis of ATLAS’s Bathymetric Mapping Performance. Remote Sensing, 2019. 11(14).
47. Smith, B., et al., Land ice height-retrieval algorithm for NASA′s ICESat-2 photon-counting laser altimeter. Remote Sensing of Environment, 2019. 233.
48. Michie, D., D. Spiegelhalter, and C. Taylor, Machine Learning, Neural and Statistical Classification. Technometrics, 1999. 37.
49. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444.
50. Längkvist, M., et al., Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks. Remote Sensing, 2016. 8: p. 329.
51. Makantasis, K., et al. Deep supervised learning for hyperspectral data classification through convolutional neural networks. in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). 2015.
52. Kussul, N., et al., Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 2017. 14(5): p. 778-782.
53. Fincham, J.I., et al., Developing the use of convolutional neural networking in benthic habitat classification and species distribution modelling. ICES Journal of Marine Science, 2020.
54. Shields, J., O. Pizarro, and S.B. Williams. Towards Adaptive Benthic Habitat Mapping. in 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020.
55. Raphael, A., et al., Deep neural network recognition of shallow water corals in the Gulf of Eilat (Aqaba). Scientific reports, 2020. 10(1): p. 12959-12959.
56. Kanno, A. and Y. Tanaka, Modified Lyzenga′s Method for Estimating Generalized Coefficients of Satellite-Based Predictor of Shallow Water Depth. Ieee Geoscience and Remote Sensing Letters, 2012. 9(4): p. 715-719.
57. Vermote, E.F., et al., Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. Ieee Transactions on Geoscience and Remote Sensing, 1997. 35(3): p. 675-686.
58. Wilson, R.T., Py6S: A Python interface to the 6S radiative transfer model. Computers and Geosciences, 2013. 51: p. 166-171.
59. Alavipanah, S.K., et al., Criteria of selecting satellite data for studying land resources. Desert, 2010. 15(2): p. 83-102.
60. Kalnay, E., et al., The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American Meteorological Society, 1996. 77(3): p. 437-472.
61. Brunt, K.M., et al., Determination of Local Slope on the Greenland Ice Sheet Using a Multibeam Photon-Counting Lidar in Preparation for the ICESat-2 Mission. IEEE Geoscience and Remote Sensing Letters, 2014. 11(5): p. 935-939.
62. Andrews, D.F. and C.L. Mallows, Scale Mixtures of Normal Distributions. Journal of the Royal Statistical Society. Series B (Methodological), 1974. 36(1): p. 99-102.
63. Breiman, L., Random Forests. Machine Learning, 2001. 45(1): p. 5-32.
64. Mather, P. and B. Tso, Classification methods for remotely sensed data, second edition. 2016. 1-376.
65. Mountrakis, G., J. Im, and C. Ogole, Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 2011. 66: p. 247-259.
66. Agarap, A.F., Deep Learning using Rectified Linear Units (ReLU). 2018.
67. Heaton, J., Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning. Genetic Programming and Evolvable Machines, 2018. 19(1): p. 305-307.
68. Kingma, D. and J. Ba, Adam: A Method for Stochastic Optimization. International Conference on Learning Representations, 2014.
69. Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 1991. 37(1): p. 35-46.
70. Foody, G. On the compensation for chance agreement in image classification accuracy assessment, Photogram. 1992.
71. Liu, J.Y., Status of marine biodiversity of the China seas. PLoS One, 2013. 8(1): p. e50719.
72. Clark, A. and C. Li, Marine mineral resources of the South China sea. Marine Georesources & Geotechnology, 1993. 11(1): p. 101-126.
73. Libraries, U.o.T. map modified from South East Asia map. 2013 [cited 2021; Available from: https://legacy.lib.utexas.edu/maps/middle_east_and_asia/southeast_asia_pol_2013.pdf.
74. Hancox, D.J., J.R.V. Prescott, and C.H. Schofield, A geographical description of the Spratly Islands and an account of hydrographic surveys amongst those islands. 1995, Durham, UK: International Boundaries Research Unit, University of Durham.
75. Agency, E.S. Sentinel-2. 2021 [cited 2021; Available from: https://sentinel.esa.int/web/sentinel/missions/sentinel-2.
76. Chybicki, A., Three-Dimensional Geographically Weighted Inverse Regression (3GWR) Model for Satellite Derived Bathymetry Using Sentinel-2 Observations. Marine Geodesy, 2018. 41(1): p. 1-23.
77. Su, H., H. Liu, and W.D. Heyman, Automated Derivation of Bathymetric Information from Multi-Spectral Satellite Imagery Using a Non-Linear Inversion Model. Marine Geodesy, 2008. 31(4): p. 281-298.
78. Su, H.B., et al., Geographically Adaptive Inversion Model for Improving Bathymetric Retrieval From Satellite Multispectral Imagery. Ieee Transactions on Geoscience and Remote Sensing, 2014. 52(1): p. 465-476.
79. Astakhov, D., Materials on fauna of anemonefishes (Pomacentridae, Amphiprioninae) and their host sea anemones (cnidaria, actiniaria) on reefs of Ly Son Islands (South China Sea, Central Vietnam)). Journal of Ichthyology, 2015. 55: p. 753-756.
80. Ben, H. and T. Dautova, SOFT CORALS (OCTOCORALLIA: ALCYONACEA) IN LY SON ISLANDS, THE CENTRAL OF VIETNAM. Vietnam Journal of Marine Science and Technology, 2012. 10.
81. Lương Văn Khanh, N.H.Q., Investigate and survey information on the current status of biological resources and biodiversity in Ly Son 2011.
82. Long, N. and S.T. Vo, Degradation trend of coral reefs in the coastal waters of Vietnam. Galaxea, Journal of Coral Reef Studies, 2013. 15: p. 79-83.
83. PlanetTeam, Planet Education and Research Program. Available online: https://www.planet.com/markets/educati on-and-research, 2020.
84. Roelfsema, C. and S. Phinn, Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps. Journal of Applied Remote Sensing, 2010. 4.
85. Kohler, K.E. and S.M. Gill, Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, 2006. 32(9): p. 1259-1269.
86. Vahtmäe, E. and T. Kutser, Classifying the Baltic Sea Shallow Water Habitats Using Image-Based and Spectral Library Methods. 2013.
87. Ronneberger, O., P. Fischer, and T. Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. 2015. Cham: Springer International Publishing.
指導教授 任玄 曾國欣(REN HSUAN TSENG, KUO-HSIN) 審核日期 2021-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明