博碩士論文 107326005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.139.87.151
姓名 蔡伊亭(I-Ting Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣都會區PM2.5化學成分與大氣光學特性
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文連結環保署2020年「細懸浮微粒(PM2.5)化學成分監測及分析計畫」在板橋、忠明(西屯)、小港測站的PM2.5 (氣動直徑小於或等於2.5 μm粒狀物)化學成分和「空氣能見度監測規劃及應用服務計畫」光學量測數據,探討影響台灣都會區大氣能見度的PM2.5化學成分及環境因子,研究過程運用PM2.5光學特性,解析各地的氣膠類型和可能的污染來源,並瞭解不同季節氣膠化學成分對於大氣的光學效應。
本文比較人工觀測、大氣消光係數量測轉換值、PM2.5化學成分估算消光係數轉換的能見度,顯示推估與人工觀測的能見度大略有相似的時間變化趨勢,但估算的能見度高於人工觀測能見度相當多,三者間差異與能見度評估方法、氣膠化合物結合型態、人工觀測目標物選取有關。各測站PM2.5化學成分普遍以有機物、硫酸銨及硝酸銨影響大氣能見度較大。在低溫高濕的環境下,大氣能見度有衰減的現象,但在高濃度的PM2.5環境下,環境濕度對能見度的影響並不顯著。從短時間的變化來看,氣膠吸光和散光係數的晝夜變化與交通排放和氣象條件相關聯,黑碳(Black Carbon, BC)小時濃度的日變化也和交通排放相關;另外,本文使用Aethalometer Model評估BC貢獻源,同樣得到以交通排放為主(約占80%)。
以雙變量條件機率函數呈現板橋、忠明(西屯)及小港測站潛在高污染來源,發現板橋測站除了車輛排放外,可能會受到工業區和焚化廠帶來的污染。忠明(西屯)測站受到西風影響時,會帶來聚集於西側的高污染源,南方則另有生質燃燒影響。小港站可能受到船舶排放、工業區、鋼鐵、煉油廠、交通污染的影響。依據氣膠光學厚度(Aerosol Optical Depth, AOD)及AE ( Ångström exponent, AE) 數值進行的氣膠分類,發現三個測站在四季都以都市型微粒為主,以車輛排放產生的微粒居多,忠明和小港站在PM2.5 >25 μg m-3時,AOD高值大多發生在高風速低相對濕度的環境下。
總結來說,大氣能見度數值會受到不同評量基礎的影響,PM2.5化學成分以有機碳、硫酸銨及硝酸銨影響大氣能見度較大,在台灣都會區影響大氣能見度主要為移動污染源和環境因子;三個測站氣膠類型大多以細小粒徑的都市型微粒為主,顯示PM2.5對台灣都會區影響重大。
摘要(英) This study associated with PM2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) chemical speciation at the Banqiao, Zhongming, and Xiaogang sites in “The 2020 Project of Chemical Speciation Monitoring and Analysis of Fine Particulate Matter (PM2.5)” and optical measurements in “Plan and Application of Atmospherical Visibility Monitoring Construction” to investigate PM2.5 chemical speciation and environmental factors on atmospheric visibility in Taiwan’s metropolis. This work used PM2.5 optical properties to resolve aerosol types and potential sources and revealed the optical effects of aerosol chemical components in different seasons during the study.
The atmospheric visibilities from estimated and manual observations were roughly consistent in time variation, but estimated values were much higher than manual ones from comparisons among manual observation, conversion from the atmospheric optical property, and estimates from PM2.5 chemical speciation. The differences mentioned above are related to the visibility conversion method, aerosol compound forms, and objects selected from manual observation. Organic matter, ammonium sulfate, and ammonium nitrate of PM2.5 chemical components affect atmospheric visibility predominantly. Low temperature and high relative humidity degraded atmospheric visibility significantly but turned insignificant for high PM2.5 levels. The diurnal and nocturnal variations of aerosol light absorption and scattering coefficients were associated with traffic emissions and meteorological factors. The hourly variations of black carbon (BC) in a day were also related to traffic emissions. Likewise, traffic emissions were a dominant source of BC (around 80%) estimated from the Aethalometer Model.
This study adopted conditional bivariate probability function to explore high polluting potential sources at the Banqiao, Zhongming (Xitun), and Xiaogang sites. The results showed that industrial parks and municipal incinerators might pollute the Banqiao site in addition to traffic emissions. The Zhongming (Xitun) site was influenced by the west wind transporting high polluting source contributions from the west plus additional biomass burning from the south. In comparison, the Xiaogang site was under the influence of ship emissions, industrial parks, iron and steel manufacturing, refinery, and traffic pollutions. Based on aerosol optical depth (AOD) and AE (Ångström exponent), the three sites were classified into urban-type aerosols mostly discharged by vehicle emissions in four seasons. For PM2.5 >25 μg m-3, high AOD values mainly occurred in high wind speed and low relative humidity environments at the Zhongming and Xiaogang sites.
In summary, atmospheric visibility will be affected by different assessment bases. Organic carbon, ammonium sulfate, and ammonium nitrate affected atmospheric visibility greater than other components in PM2.5 chemical speciation. Mobile sources and environmental factors influence atmospheric visibility mainly in Taiwan’s metropolis. In principle, the aerosol types at the three sites are fine urban-type aerosols, which demonstrates a significant influence of PM2.5.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ 大氣能見度
★ 氣膠化學成分與大氣光學
關鍵字(英) ★ Fine particulate matter (PM2.5)
★ Atmospheric visibility
★ Aerosol chemical composition and the atmospheric optics
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 4
2-1 細懸浮微粒(PM2.5)的重要性 4
2-1-1 PM2.5對環境的影響 4
2-1-2 PM2.5對人體的危害 4
2-2 細懸浮微粒(PM2.5)的組成來源 6
2-2-1 PM2.5水溶性無機離子 6
2-2-2 PM2.5碳成分 7
2-2-3 PM2.5金屬元素 9
2-3 PM2.5對大氣能見度的影響 11
2-4 氣膠光學特性 13
2-4-1 氣膠吸光特性 14
2-4-2 氣膠散光特性 16
2-4-3 氣膠的混合狀態 18
2-5 氣膠光學厚度(Aerosol Optical Depth, AOD) 20
2-6 雙變量條件機率函數(CBPF) 22
第三章 研究方法 24
3-1 研究架構 24
3-2 採樣地點與時間 25
3-2-1 採樣地點 26
3-2-2 採樣時間 27
3-3 PM2.5手動採樣儀器 28
3-3-1 MetOne SASS PM2.5採樣器 28
3-3-2 MetOne E-FRM PM2.5採樣器 29
3-4 PM2.5質量濃度和化學成分分析方法 31
3-4-1 濾紙採樣前準備 31
3-4-2 水溶性無機離子分析方法 31
3-4-3 碳成分分析方法 33
3-4-4 質量濃度秤重分析 35
3-5 光學量測儀器 37
3-5-1 長光徑可見光透射儀 (Long Path Visibility Transmissometer) 37
3-5-2 室外積分式散光儀 (Open-Air Integrating Nephelometer) 38
3-5-3 黑碳多波段吸光儀 (MetOne BC-1054) 39
3-6 Ångström exponent 42
3-7 Revised IMPROVE 模擬消光係數 43
3-8 氣流軌跡模式(NOAA HYSPLIT) 46
3-8 雙變量條件機率函數CBPF法 47
第四章 結果與討論 48
4-1 數據選取 48
4-2 大氣能見度的人工與儀器觀測比較 49
4-2-1 可見光透射儀與(散光儀+吸光儀)的消光係數比較 54
4-3 氣膠化學成分與大氣消光係數 58
4-3-1 Revised IMPROVE方程式推估大氣消光係數與貢獻因子 58
4-3-2 大氣消光係數與氣象因子 63
4-3-3 大氣能見度與相對濕度 67
4-3-4 大氣消光係數與Revised IMPROVE方程式推估結果 70
4-4 氣膠光學參數與PM2.5化學成分 72
4-4-1 光學參數日變化 76
4-4-2 單一散射反照率(Single-scattering albedo, SSA) 83
4-5 氣膠黑碳與吸光係數 86
4-5-1 氣膠吸收指數(Absorption Ångstrom Exponent, AAE) 86
4-5-2 多波段黑碳判別污染源 93
4-6 雙變量條件機率函數CBPF法 97
4-6-1 板橋站 97
4-6-2 忠明(西屯)站 101
4-6-3 小港站 105
4-7 PM2.5與AOD 109
4-7-1 氣膠化學成分與 AOD 109
4-7-2 氣象條件與AOD 123
4-8 三個城市間大氣能見度特質 127
4-8-1 共通性 127
4-8-2 差異性 128
第五章 結論與建議 131
5-1 結論 131
5-2 建議 133
參考文獻 134
附錄一 各測站2019/12月~ 2020/11月逆推氣流軌跡圖 149
附錄二 各測站PM2.5氣流軌跡來源 161
附錄三 利用CBPF及風花圖判別可能污染來源 164
附錄四 潛在污染源地圖 188
附錄五 口試委員意見與回覆 191
參考文獻 Adam, M.G., Chiang, A.W.J., Balasubramanian, R., 2020. Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia. Environmental Pollution 257, 113425.
Alam, K., Shaheen, K., Blaschke, T., Chishtie, F., Khan, H.U., Haq, B.S., 2016. Classification of aerosols in an urban environment on the basis of optical measurements. Aerosol and Air Quality Research 16, 2535-2549.
Ali, M.A., Nichol, J.E., Bilal, M., Qiu, Z., Mazhar, U., Wahiduzzaman, M., Almazroui, M., Islam, M.N., 2020. Classification of aerosols over Saudi Arabia from 2004–2016. Atmospheric Environment 241, 117785.
Amato, F., Hopke, P.K., 2012. Source apportionment of the ambient PM2. 5 across St. Louis using constrained positive matrix factorization. Atmospheric Environment 46, 329-337.
Amodio, M., Andriani, E., Dambruoso, P., de Gennaro, G., Di Gilio, A., Intini, M., Palmisani, J., Tutino, M., 2013. A monitoring strategy to assess the fugitive emission from a steel plant. Atmospheric Environment 79, 455-461.
Andreae, M.O., Schmid, O., Yang, H., Chand, D., Yu, J.Z., Zeng, L.-M., Zhang, Y.-H., 2008. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China. Atmospheric Environment 42, 6335-6350.
Anenberg, S., Miller, J., Henze, D., Minjares, R., 2019. A global snapshot of the air pollution-related health impacts of transportation sector emissions in 2010 and 2015. International Council on Clean Transportation: Washington, DC, USA.
Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment (1967) 19, 1263-1270.
Bergstrom, R.W., Pilewskie, P., Russell, P.B., Redemann, J., Bond, T.C., Quinn, P.K., Sierau, B., 2007. Spectral absorption properties of atmospheric aerosols.
Bhat, M.A., Romshoo, S.A., Beig, G., 2017. Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: Seasonality, sources, meteorology and radiative forcing. Atmospheric Environment 165, 336-348.
Bhuyan, P., Barman, N., Bora, J., Daimari, R., Deka, P., Hoque, R.R., 2016. Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmospheric Environment 142, 194-209.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres 109.
Bukowiecki, N., Steinbacher, M., Henne, S., Nguyen, N.A., Nguyen, X.A., Le Hoang, A., Nguyen, D.L., Duong, H.L., Engling, G., Wehrle, G., 2019. Effect of large-scale biomass burning on aerosol optical properties at the GAW regional station Pha Din, Vietnam. Aerosol and Air Quality Research 19, 1172-1187.
Calderón-Garcidueñas, L., Avila-Ramírez, J., Calderon-Garciduenas, A., González-Heredia, T., Acuña-Ayala, H., Chao, C.-k., Thompson, C., Ruiz-Ramos, R., Cortés-González, V., Martínez-Martínez, L., 2016. Cerebrospinal fluid biomarkers in highly exposed PM 2.5 urbanites: The risk of Alzheimer’s and Parkinson’s diseases in young Mexico City residents. Journal of Alzheimer′s Disease 54, 597-613.
Celo, V., Dabek-Zlotorzynska, E., McCurdy, M., 2015. Chemical characterization of exhaust emissions from selected Canadian marine vessels: the case of trace metals and lanthanoids. Environmental Science & Technology 49, 5220-5226.
Charlson, R.J., Schwartz, S., Hales, J., Cess, R.D., Coakley, J.J., Hansen, J., Hofmann, D., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
Chen, D., Zhao, Y., Lyu, R., Wu, R., Dai, L., Zhao, Y., Chen, F., Zhang, J., Yu, H., Guan, M., 2019. Seasonal and spatial variations of optical properties of light absorbing carbon and its influencing factors in a typical polluted city in Yangtze River Delta, China. Atmospheric Environment 199, 45-54.
Chen, Y., Bond, T., 2010. Light absorption by organic carbon from wood combustion. Atmospheric Chemistry & Physics 10.
Cheng, Y., Lee, S., Ho, K., Chow, J., Watson, J., Louie, P., Cao, J., Hai, X., 2010. Chemically-speciated on-road PM2. 5 motor vehicle emission factors in Hong Kong. Science of the Total Environment 408, 1621-1627.
Cheng, Y., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brüggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., Tuch, T., 2008. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment 42, 6351-6372.
Cheng, Z., Wang, S., Qiao, L., Wang, H., Zhou, M., Fu, X., Lou, S., Luo, L., Jiang, J., Chen, C., 2018. Insights into extinction evolution during extreme low visibility events: Case study of Shanghai, China. Science of the Total Environment 618, 793-803.
Choi, J., Oh, J.Y., Lee, Y.S., Min, K.H., Hur, G.Y., Lee, S.Y., Kang, K.H., Shim, J.J., 2018. Harmful impact of air pollution on severe acute exacerbation of chronic obstructive pulmonary disease: particulate matter is hazardous. International Journal of Chronic Obstructive Pulmonary Disease 13, 1053.
Chow, J.C., 2002. Introduction to the A&WMA 2002 Critical Review visibility: Science and regulation. Journal of the Air & Waste Management Association 52, 626-627.
Chow, J.C., Watson, J.G., 2012. Chemical analyses of particle filter deposits. Aerosols handbook: Measurement, Dosimetry, and Health Effects 2, 177-202.
Chu, S.-H., 2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392.
Cui, X., Wang, X., Yang, L., Chen, B., Chen, J., Andersson, A., Gustafsson, Ö., 2016. Radiative absorption enhancement from coatings on black carbon aerosols. Science of the Total Environment 551, 51-56.
Dall′Osto, M., Querol, X., Amato, F., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., 2013. Hourly elemental concentrations in PM2. 5 aerosols sampled simultaneously at urban background and road site during SAPUSS-diurnal variations and PMF receptor modelling.
Day, M.C., Zhang, M., Pandis, S.N., 2015. Evaluation of the ability of the EC tracer method to estimate secondary organic carbon. Atmospheric Environment 112, 317-325.
Deng, J., Xing, Z., Zhuang, B., Du, K., 2014. Comparative study on long-term visibility trend and its affecting factors on both sides of the Taiwan Strait. Atmospheric Research 143, 266-278.
Deng, J., Zhang, Y., Hong, Y., Xu, L., Chen, Y., Du, W., Chen, J., 2016. Optical properties of PM2. 5 and the impacts of chemical compositions in the coastal city Xiamen in China. Science of the Total Environment 557, 665-675.
Dubovik, O., Holben, B., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D., Slutsker, I., 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences 59, 590-608.
Ebert, M., Inerle-Hof, M., Weinbruch, S., 2002. Environmental scanning electron microscopy as a new technique to determine the hygroscopic behaviour of individual aerosol particles. Atmospheric Environment 36, 5909-5916.
Eidels-Dubovoi, S., 2002. Aerosol impacts on visible light extinction in the atmosphere of Mexico City. Science of the Total Environment 287, 213-220.
Galindo, N., Yubero, E., Nicolás, J., Crespo, J., Pastor, C., Carratalá, A., Santacatalina, M., 2011. Water-soluble ions measured in fine particulate matter next to cement works. Atmospheric Environment 45, 2043-2049.
Gluščić, V., Čačković, M., Pehnec, G., Bešlić, I., 2020. Ionic composition of PM2. 5 particle fraction at a coastal urban background site in Croatia. Atmospheric Pollution Research.
Gui, K., Che, H., Wang, Y., Wang, H., Zhang, L., Zhao, H., Zheng, Y., Sun, T., Zhang, X., 2019. Satellite-derived PM2. 5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological parameters. Environmental Pollution 247, 1125-1133.
Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N., George, C., Goldstein, A., 2009. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmospheric Chemistry and Physics 9, 5155-5236.
Han, T., Qiao, L., Zhou, M., Qu, Y., Du, J., Liu, X., Lou, S., Chen, C., Wang, H., Zhang, F., 2015. Chemical and optical properties of aerosols and their interrelationship in winter in the megacity Shanghai of China. Journal of Environmental Sciences 27, 59-69.
Heintzenberg, J., Charlson, R., Clarke, A., Liousse, C., Ramaswamy, V., Shine, K., Wendisch, M., Helas, G., 1997. Measurements and modelling of aerosol single-scattering albedo: Progress, problems and prospects. Contributions to Atmospheric Physics 70, 249-263.
Hellebust, S., Allanic, A., O′Connor, I., Jourdan, C., Healy, D., Sodeau, J., 2010. Sources of ambient concentrations and chemical composition of PM2. 5–0.1 in Cork Harbour, Ireland. Atmospheric Research 95, 136-149.
Hogan, M.K., Kovalycsik, T., Sun, Q., Rajagopalan, S., Nelson, R.J., 2015. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice. Behavioural Brain Research 294, 81-88.
Horvath, H., 1971. On the applicability of the Koschmieder visibility formula. Atmospheric Environment (1967) 5, 177-184.
Horvath, H., 1996. Spectral extinction coefficients of rural aerosol in southern Italy-A case study of cause and effect of variability of atmospheric aerosol. Journal of Aerosol Science 27, 437-453.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C., 2016. Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150.
Izhar, S., Gupta, T., Qadri, A.M., Panday, A.K., 2021. Wintertime chemical characteristics of aerosol and their role in light extinction during clear and polluted days in rural Indo Gangetic plain. Environmental Pollution 282, 117034.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695-697.
Jeričević, A., Gašparac, G., Mikulec, M.M., Kumar, P., Prtenjak, M.T., 2019. Identification of diverse air pollution sources in a complex urban area of Croatia. Journal of Environmental Management 243, 67-77.
Jing, A., Zhu, B., Wang, H., Yu, X., An, J., Kang, H., 2019. Source apportionment of black carbon in different seasons in the northern suburb of Nanjing, China. Atmospheric Environment 201, 190-200.
Jung, J., Lee, H., Kim, Y.J., Liu, X., Zhang, Y., Hu, M., Sugimoto, N., 2009. Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing‐2006). Journal of Geophysical Research: Atmospheres 114.
Kaskaoutis, D., Kambezidis, H., Hatzianastassiou, N., Kosmopoulos, P., Badarinath, K., 2007. Aerosol climatology: on the discrimination of aerosol types over four AERONET sites.
Kfoury, A., Ledoux, F., Roche, C., Delmaire, G., Roussel, G., Courcot, D., 2016. PM2. 5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. Journal of Environmental Sciences 40, 114-128.
Kim, S., Kim, T.-Y., Yi, S.-M., Heo, J., 2018. Source apportionment of PM2. 5 using positive matrix factorization (PMF) at a rural site in Korea. Journal of Environmental Management 214, 325-334.
Koo, J.-H., Lee, J., Kim, J., Eck, T.F., Giles, D.M., Holben, B.N., Park, S.S., Choi, M., Kim, N., Yoon, J., 2021. Investigation of the relationship between the fine mode fraction and Ångström exponent: Cases in Korea. Atmospheric Research 248, 105217.
Laing, J.R., Jaffe, D.A., Hee, J.R., 2016. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmospheric Chemistry and Physics 16, 15185-15197.
Lan, Z.-J., Huang, X.-F., Yu, K.-Y., Sun, T.-L., Zeng, L.-W., Hu, M., 2013. Light absorption of black carbon aerosol and its enhancement by mixing state in an urban atmosphere in South China. Atmospheric Environment 69, 118-123.
Lavanchy, V., Gäggeler, H., Nyeki, S., Baltensperger, U., 1999. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmospheric Environment 33, 2759-2769.
Ledoux, F., Kfoury, A., Delmaire, G., Roussel, G., El Zein, A., Courcot, D., 2017. Contributions of local and regional anthropogenic sources of metals in PM2. 5 at an urban site in northern France. Chemosphere 181, 713-724.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Liang, Y., Che, H., Gui, K., Zheng, Y., Yang, X., Li, X., Liu, C., Sheng, Z., Sun, T., Zhang, X., 2019. Impact of biomass burning in South and Southeast Asia on background aerosol in Southwest China. Aerosol and Air Quality Research 19, 1188-1204.
Liao, W., Zhou, J., Zhu, S., Xiao, A., Li, K., Schauer, J.J., 2020. Characterization of aerosol chemical composition and the reconstruction of light extinction coefficients during winter in Wuhan, China. Chemosphere 241, 125033.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics 15, 4117-4130.
Liu, B., Bi, X., Feng, Y., Dai, Q., Xiao, Z., Li, L., Wu, J., Yuan, J., Zhang, Y., 2016. Fine carbonaceous aerosol characteristics at a megacity during the Chinese Spring Festival as given by OC/EC online measurements. Atmospheric Research 181, 20-28.
Liu, F., Tan, Q., Jiang, X., Yang, F., Jiang, W., 2019. Effects of relative humidity and PM2. 5 chemical compositions on visibility impairment in Chengdu, China. Journal of Environmental Sciences 86, 15-23.
Liu, N., Ma, Y., Ma, J., Wang, Y., Yang, S., Li, L., 2015. Atmospheric extinction properties in Shenyang, China. Particuology 18, 120-126.
Lyamani, H., Olmo, F., Alados-Arboledas, L., 2008. Light scattering and absorption properties of aerosol particles in the urban environment of Granada, Spain. Atmospheric Environment 42, 2630-2642.
Ma, Y., Xin, J., Ma, Y., Kong, L., Zhang, K., Zhang, W., Wang, Y., Wang, X., Zhu, Y., 2017. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest China. Advances in Atmospheric Sciences 34, 1017-1026.
Maji, S., Ghosh, S., Ahmed, S., 2018. Association of air quality with respiratory and cardiovascular morbidity rate in Delhi, India. International Journal of Environmental Health Research 28, 471-490.
Major, I., Furu, E., Varga, T., Horváth, A., Futó, I., Gyökös, B., Somodi, G., Lisztes-Szabó, Z., Jull, A.T., Kertész, Z., 2021. Source identification of PM2. 5 carbonaceous aerosol using combined carbon fraction, radiocarbon and stable carbon isotope analyses in Debrecen, Hungary. Science of The Total Environment 782, 146520.
Malm, W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmospheric Environment 35, 2845-2860.
Mani, S., Mani, F.S., Kumar, A., Shah, S., Peltier, R., 2020. Traffic related PM2. 5 air quality: Policy options for developing Pacific Island countries. Transportation Research Part D: Transport and Environment 87, 102519.
Matawle, J.L., Pervez, S., Dewangan, S., Shrivastava, A., Tiwari, S., Pant, P., Deb, M.K., Pervez, Y., 2015. Characterization of PM2. 5 source profiles for traffic and dust sources in Raipur, India. Aerosol and Air Quality Research 15, 2537-2548.
Maurer, M., Klemm, O., Lokys, H.L., Lin, N.-H., 2019. Trends of fog and visibility in Taiwan: climate change or air quality improvement? Aerosol and Air Quality Research 19, 896-910.
McCartney, E.J., 1976. Optics of the atmosphere: scattering by molecules and particles. nyjw.
McDonald, B.C., Goldstein, A.H., Harley, R.A., 2015. Long-term trends in California mobile source emissions and ambient concentrations of black carbon and organic aerosol. Environmental Science & Technology 49, 5178-5188.
McInnes, L., Covert, D., Quinn, P., Germani, M., 1994. Measurements of chloride depletion and sulfur enrichment in individual sea‐salt particles collected from the remote marine boundary layer. Journal of Geophysical Research: Atmospheres 99, 8257-8268.
McMeeking, G., Kreidenweis, S., Carrico, C., Lee, T., Collett Jr, J., Malm, W., 2005. Observations of smoke‐influenced aerosol during the Yosemite Aerosol Characterization Study: Size distributions and chemical composition. Journal of Geophysical Research: Atmospheres 110.
Menon, S., Hansen, J., Nazarenko, L., Luo, Y., 2002. Climate effects of black carbon aerosols in China and India. Science 297, 2250-2253.
Miao, S., Chen, F., LeMone, M.A., Tewari, M., Li, Q., Wang, Y., 2009. An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. Journal of Applied Meteorology and Climatology 48, 484-501.
Moise, T., Flores, J.M., Rudich, Y., 2015. Optical properties of secondary organic aerosols and their changes by chemical processes. Chemical Reviews 115, 4400-4439.
Mokhtar, M.M., Taib, R.M., Hassim, M.H., 2014. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. Journal of the Air & Waste Management Association 64, 867-878.
Moosmüller, H., Chakrabarty, R., Arnott, W., 2009. Aerosol light absorption and its measurement: A review. Journal of Quantitative Spectroscopy and Radiative Transfer 110, 844-878.
Mousavi, A., Sowlat, M.H., Lovett, C., Rauber, M., Szidat, S., Boffi, R., Borgini, A., De Marco, C., Ruprecht, A.A., Sioutas, C., 2019. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmospheric Environment 203, 252-261.
Myhre, G., Shindell, D., Pongratz, J., 2014. Anthropogenic and natural radiative forcing.
Nagel, G., Stafoggia, M., Pedersen, M., Andersen, Z.J., Galassi, C., Munkenast, J., Jaensch, A., Sommar, J., Forsberg, B., Olsson, D., 2018. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE). International Journal of Cancer 143, 1632-1643.
Ni, H., Tian, J., Wang, X., Wang, Q., Han, Y., Cao, J., Long, X., Chen, L.-W.A., Chow, J.C., Watson, J.G., 2017. PM2. 5 emissions and source profiles from open burning of crop residues. Atmospheric Environment 169, 229-237.
O’Neill, N.T., Dubovik, O., Eck, T.F., 2001. Modified Ångström exponent for the characterization of submicrometer aerosols. Applied Optics 40, 2368-2375.
Pan, X., Kanaya, Y., Wang, Z., Liu, Y., Pochanart, P., Akimoto, H., Sun, Y., Dong, H., Li, J., Irie, H., 2011. Correlation of black carbon aerosol and carbon monoxide in the high-altitude environment of Mt. Huang in Eastern China. Atmospheric Chemistry & Physics 11.
Pandey, C.P., Singh, J., Soni, V.K., Singh, N., 2020. Yearlong first measurements of black carbon in the western Indian Himalaya: Influences of meteorology and fire emissions. Atmospheric Pollution Research.
Park, K., Chow, J.C., Watson, J.G., Trimble, D.L., Doraiswamy, P., Park, K., Arnott, W.P., Stroud, K.R., Bowers, K., Bode, R., 2006. Comparison of continuous and filter-based carbon measurements at the Fresno Supersite. Journal of the Air & Waste Management Association 56, 474-491.
Peng, J., Hu, M., Guo, S., Du, Z., Shang, D., Zheng, J., Zheng, J., Zeng, L., Shao, M., Wu, Y., 2017. Ageing and hygroscopicity variation of black carbon particles in Beijing measured by a quasi-atmospheric aerosol evolution study (QUALITY) chamber. Atmospheric Chemistry and Physics 17, 10333.
Peppler, R.A., Bahrmann, C., Barnard, J.C., Campbell, J., Cheng, M.-D., Ferrare, R., Halthore, R., HeiIman, L., Hlavka, D., Laulainen, N.S., 2000. ARM Southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires. Bulletin of the American Meteorological Society 81, 2563-2592.
Pey, J., Querol, X., Alastuey, A., 2010. Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmospheric Environment 44, 1587-1596.
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J., 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. Journal of the Air & Waste Management Association 57, 1326-1336.
Qu, W., Wang, J., Zhang, X., Wang, D., Sheng, L., 2015a. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmospheric Research 153, 500-511.
Qu, W., Wang, J., Zhang, X., Yang, Z., Gao, S., 2015b. Effect of cold wave on winter visibility over eastern China. Journal of Geophysical Research: Atmospheres 120, 2394-2406.
Ravishankara, A., 1997. Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058-1065.
Requia, W.J., Adams, M.D., Koutrakis, P., 2017. Association of PM2. 5 with diabetes, asthma, and high blood pressure incidence in Canada: A spatiotemporal analysis of the impacts of the energy generation and fuel sales. Science of the Total Environment 584, 1077-1083.
Romano, S., Perrone, M.R., Pavese, G., Esposito, F., Calvello, M., 2019. Optical properties of PM2. 5 particles: Results from a monitoring campaign in southeastern Italy. Atmospheric Environment 203, 35-47.
Rovira, J., Sierra, J., Nadal, M., Schuhmacher, M., Domingo, J.L., 2018. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations. Environmental Research 165, 201-209.
Russell, P., Bergstrom, R., Shinozuka, Y., Clarke, A., DeCarlo, P., Jimenez, J., Livingston, J., Redemann, J., Dubovik, O., Strawa, A., 2010. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition. Atmos. Chem. Phys 10, 1155-1169.
Sandradewi, J., Prévôt, A., Weingartner, E., Schmidhauser, R., Gysel, M., Baltensperger, U., 2008a. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment 42, 101-112.
Sandradewi, J., Prévôt, A.S., Szidat, S., Perron, N., Alfarra, M.R., Lanz, V.A., Weingartner, E., Baltensperger, U., 2008b. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environmental Science & Technology 42, 3316-3323.
Sandradewi, J., Prévôt, A., Alfarra, M., Szidat, S., Wehrli, M., Ruff, M., Weimer, S., Lanz, V., Weingartner, E., Perron, N., 2008c. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmospheric Chemistry and Physics Discussions 8, 8091-8118.
Sarangi, B., Ramachandran, S., Rajesh, T., Dhaker, V.K., 2019. Black carbon linked aerosol hygroscopic growth: Size and mixing state are crucial. Atmospheric Environment 200, 110-118.
Schmeisser, L., Backman, J., Ogren, J.A., Andrews, E., Asmi, E., Starkweather, S., Uttal, T., Fiebig, M., Sharma, S., Eleftheriadis, K., 2018. Seasonality of aerosol optical properties in the Arctic. Atmospheric Chemistry and Physics 18, 11599-11622.
Schnaiter, M., Linke, C., Möhler, O., Naumann, K.H., Saathoff, H., Wagner, R., Schurath, U., Wehner, B., 2005. Absorption amplification of black carbon internally mixed with secondary organic aerosol. Journal of Geophysical Research: Atmospheres 110.
Seinfeld, J.H., Pandis, S.N., Noone, K., 1998. Atmospheric chemistry and physics: from air pollution to climate change. PhT 51, 88.
Shaheen, K., Shah, Z., Suo, H., Liu, M., Ma, L., Alam, K., Gul, A., Cui, J., Li, C., Wang, Y., 2019. Aerosol clustering in an urban environment of Beijing during (2005–2017). Atmospheric Environment 213, 534-547.
Sharma, M.C., Pandey, V.K., Kumar, R., Latief, S.U., Chakrawarthy, E., Acharya, P., 2018. Seasonal characteristics of black carbon aerosol mass concentrations and influence of meteorology, New Delhi (India). Urban Climate 24, 968-981.
Shen, Y., Virkkula, A., Ding, A., Wang, J., Chi, X., Nie, W., Qi, X., Huang, X., Liu, Q., Zheng, L., 2018. Aerosol optical properties at SORPES in Nanjing, east China. Atmospheric Chemistry and Physics 18, 5265-5292.
Singh, S., Tiwari, S., Hopke, P., Zhou, C., Turner, J., Panicker, A., Singh, P., 2018. Ambient black carbon particulate matter in the coal region of Dhanbad, India. Science of The Total Environment 615, 955-963.
Song, Y., Zhang, Y., Dai, W., 2011. PM2. 5 sources and their effects on human health in China: case report.
Soni, K., Singh, S., Bano, T., Tanwar, R., Nath, S., Arya, B., 2010. Variations in single scattering albedo and Angstrom absorption exponent during different seasons at Delhi, India. Atmospheric Environment 44, 4355-4363.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Tan, Y., Wang, H., Shi, S., Shen, L., Zhang, C., Zhu, B., Guo, S., Wu, Z., Song, Z., Yin, Y., 2020. Annual variations of black carbon over the Yangtze River Delta from 2015 to 2018. Journal of Environmental Sciences 96, 72-84.
Tie, X., Long, X., Dai, W., Brasseur, G.P., 2017. Surface PM 2.5, Satellite Distribution of Atmospheric Optical Depth and Related Effects on Crop Production in China, Air Pollution in Eastern Asia: An Integrated Perspective. Springer, pp. 479-488.
Titos, G., Del Águila, A., Cazorla, A., Lyamani, H., Casquero-Vera, J.A., Colombi, C., Cuccia, E., Gianelle, V., Močnik, G., Alastuey, A., 2017. Spatial and temporal variability of carbonaceous aerosols: assessing the impact of biomass burning in the urban environment. Science of the Total Environment 578, 613-625.
Tiwari, S., Pandithurai, G., Attri, S., Srivastava, A., Soni, V., Bisht, D., Kumar, V.A., Srivastava, M.K., 2015. Aerosol optical properties and their relationship with meteorological parameters during wintertime in Delhi, India. Atmospheric Research 153, 465-479.
Tiwari, S., Srivastava, A., Bisht, D., Parmita, P., Srivastava, M.K., Attri, S., 2013. Diurnal and seasonal variations of black carbon and PM2. 5 over New Delhi, India: Influence of meteorology. Atmospheric Research 125, 50-62.
Turpin, B.J., Saxena, P., Andrews, E., 2000. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmospheric Environment 34, 2983-3013.
Uria-Tellaetxe, I., Carslaw, D.C., 2014. Conditional bivariate probability function for source identification. Environmental Modelling & Software 59, 1-9.
Wang, T., Du, Z., Tan, T., Xu, N., Hu, M., Hu, J., Guo, S., 2019. Measurement of aerosol optical properties and their potential source origin in urban Beijing from 2013-2017. Atmospheric Environment 206, 293-302.
Wang, X., Shen, X., Sun, J., Zhang, X., Wang, Y., Zhang, Y., Wang, P., Xia, C., Qi, X., Zhong, J., 2018. Size-resolved hygroscopic behavior of atmospheric aerosols during heavy aerosol pollution episodes in Beijing in December 2016. Atmospheric Environment 194, 188-197.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science 34, 1445-1463.
Willison, M., Clarke, A., Zeki, E., 1985. Seasonal variation in atmospheric aerosol concentration and composition at urban and rural sites in northern England. Atmospheric Environment (1967) 19, 1081-1089.
Wu, G.-M., Cong, Z.-Y., Kang, S.-C., Kawamura, K., Fu, P.-Q., Zhang, Y.-L., Wan, X., Gao, S.-P., Liu, B., 2016. Brown carbon in the cryosphere: Current knowledge and perspective. Advances in Climate Change Research 7, 82-89.
Wu, J.-Z., Ge, D.-D., Zhou, L.-F., Hou, L.-Y., Zhou, Y., Li, Q.-Y., 2018. Effects of particulate matter on allergic respiratory diseases. Chronic Diseases and Translational Medicine 4, 95-102.
Wu, S.-P., Dai, L.-H., Zhu, H., Zhang, N., Yan, J.-P., Schwab, J.J., Yuan, C.-S., 2019. The impact of sea-salt aerosols on particulate inorganic nitrogen deposition in the western Taiwan Strait region, China. Atmospheric Research 228, 68-76.
Wyers, G., Duyzer, J., 1997. Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest. Atmospheric Environment 31, 333-343.
Xie, C., Xu, W., Wang, J., Liu, D., Ge, X., Zhang, Q., Wang, Q., Du, W., Zhao, J., Zhou, W., 2019. Light absorption enhancement of black carbon in urban Beijing in summer. Atmospheric Environment 213, 499-504.
Xu, J., Tao, J., Zhang, R., Cheng, T., Leng, C., Chen, J., Huang, G., Li, X., Zhu, Z., 2012. Measurements of surface aerosol optical properties in winter of Shanghai. Atmospheric Research 109, 25-35.
Yan, C., Tham, Y.J., Zha, Q., Wang, X., Xue, L., Dai, J., Wang, Z., Wang, T., 2019. Fast heterogeneous loss of N2O5 leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China. Science of the Total Environment 677, 637-647.
Yang, M., Howell, S., Zhuang, J., Huebert, B., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics 9, 2035-2050.
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., Zhang, L., 2019. The relationships between PM2. 5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environmental Pollution 248, 526-535.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2. 5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yu, X., Ma, J., An, J., Yuan, L., Zhu, B., Liu, D., Wang, J., Yang, Y., Cui, H., 2016. Impacts of meteorological condition and aerosol chemical compositions on visibility impairment in Nanjing, China. Journal of Cleaner Production 131, 112-120.
Yuan, C.-S., Lee, C.-G., Liu, S.-H., Chang, J.-c., Yuan, C., Yang, H.-Y., 2006. Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols. Atmospheric Research 82, 663-679.
Yusuf, N., Tilmes, S., Gbobaniyi, E., 2021. Multi-year analysis of aerosol optical properties at various timescales using AERONET data in tropical West Africa. Journal of Aerosol Science 151, 105625.
Zhang, K., Ma, Y., Xin, J., Liu, Z., Ma, Y., Gao, D., Wu, J., Zhang, W., Wang, Y., Shen, P., 2018. The aerosol optical properties and PM2. 5 components over the world′s largest industrial zone in Tangshan, North China. Atmospheric Research 201, 226-234.
Zhang, L., Qiao, L., Lan, J., Yan, Y., Wang, L., 2020a. Three-years monitoring of PM2. 5 and scattering coefficients in Shanghai, China. Chemosphere, 126613.
Zhang, Q., Sarkar, S., Wang, X., Zhang, J., Mao, J., Yang, L., Shi, Y., Jia, S., 2019. Evaluation of factors influencing secondary organic carbon (SOC) estimation by CO and EC tracer methods. Science of the Total Environment 686, 915-930.
Zhang, S., Wu, J., Fan, W., Yang, Q., Zhao, D., 2020b. Review of aerosol optical depth retrieval using visibility data. Earth-Science Reviews 200, 102986.
Zhao, J., Zhang, F., Xu, Y., Chen, J., 2011a. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research 99, 546-562.
Zhao, X., Zhang, X., Pu, W., Meng, W., Xu, X., 2011b. Scattering properties of the atmospheric aerosol in Beijing, China. Atmospheric Research 101, 799-808.
Zheng, C., Zhao, C., Zhu, Y., Wang, Y., Shi, X., Wu, X., Chen, T., Wu, F., Qiu, Y., 2017. Analysis of influential factors for the relationship between PM_ (2.5) and AOD in Beijing. Atmospheric Chemistry and Physics 17, 13473-13489.
Zheng, Y., Che, H., Xia, X., Wang, Y., Yang, L., Chen, J., Wang, H., Zhao, H., Li, L., Zhang, L., 2020. Aerosol optical properties and its type classification based on multiyear joint observation campaign in north China plain megalopolis. Chemosphere, 128560.
Zhou, Y., Wang, Q., Zhang, X., Wang, Y., Liu, S., Wang, M., Tian, J., Zhu, C., Huang, R., Zhang, Q., 2019. Exploring the impact of chemical composition on aerosol light extinction during winter in a heavily polluted urban area of China. Journal of Environmental Management 247, 766-775.
Zhu, J., Xia, X., Che, H., Wang, J., Zhang, J., Duan, Y., 2016. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmospheric Research 169, 237-247.
Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik, G., Hüglin, C., Baltensperger, U., Szidat, S., Prévôt, A.S., 2017. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmospheric Chemistry and Physics 17, 4229-4249.
Zou, J., Liu, Z., Hu, B., Huang, X., Wen, T., Ji, D., Liu, J., Yang, Y., Yao, Q., Wang, Y., 2018. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmospheric Research 201, 235-246.
Zou, J., Wang, M., Zhao, S., Wu, X., Zhao, L., Liu, J., Gao, W., Tang, G., Xin, J., Wang, L., 2019. Case study of the effects of aerosol chemical composition and hygroscopicity on the scattering coefficient in summer, Xianghe, southeast of Beijing, China. Atmospheric Research 225, 81-87.
林書輝,2013。2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化.國立中央大學環境工程研究所碩士論文
黃良坤,2000。氣膠微粒散光因子對不透光度問題影響之研究.國立台灣大學環境工程學研究所碩士論文
王韋智,2020。2019年春季高山與都市氣膠水溶性無機離子與光學特性短時間變化. 國立中央大學環境工程研究所碩士論文.
林寬昱,2020。2019年鹿林山背景生質燃燒傳輸氣膠特性及其對大氣光學影響. 國立中央大學環境工程研究所碩士論文.
李崇德、周崇光、張士昱、蕭大智、許文昌(2020)” 109年度細懸浮微粒(PM2.5)
化學成分監測及分析計畫”,期末報告(定稿本),環保署,台北,
    109年11月
指導教授 李崇德(Chung-Te Lee) 審核日期 2021-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明