博碩士論文 108323016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.144.3.200
姓名 王家元(Chia-Yuan Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具阻尼顆粒齒輪傳動系統之抑振實測與動力分析
(Vibration Suppression Test and Dynamic Analysis of a Gear Transmission System with Damping Particles)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 阻尼顆粒減振技術已被證實應用於齒輪傳動系統中可顯著降低傳動過程中產生之振動,藉由顆粒-顆粒間及顆粒-壁面間之摩擦與非彈性碰撞消能達成振動抑制之目的。為研究阻尼顆粒對齒輪傳動系統運動行為產生之影響,本研究建立具阻尼顆粒之齒輪動力量測實驗平台,透過量測軸承座上之振動加速度,分析齒輪傳動系統於不同條件下之動態響應。根據實驗結果,本研究使用ADAMS及EDEM兩套CAE軟體,基於多體動力學(Multi-body Dynamics, MBD)及離散元素法(Discrete Element Method, DEM)之理論,建構具阻尼顆粒齒輪傳動系統之MBD-DEM雙向耦合動力分析模型。藉此對該模型之軸心振動加速度結果與實驗量測結果之差異,可驗證該模型之等效性並供後續參數研究使用。實驗結果證實阻尼顆粒能有效抑制齒輪傳動時產生之振動,並由等效分析模型得出顆粒材質、粒徑、填充率及系統輸入轉速等參數對抑振效果之影響。
摘要(英) The particle damping technology has been proved that it can significantly reduce the gear transmission vibration. The vibration energy is dissipated by the friction and inelastic collision among particles and between particles and hole walls. This study has set up a vibration test platform to measure the dynamic responses for the gear transmission system with damping particles. By practically measuring the linear acceleration on the bearing seat of output shaft, the dynamic characteristics of the gear transmission system under different settings are analyzed. Following the measured results, this study establishes an equivalent dynamic analysis model for the gear transmission system containing damping particles using ADAMS and EDEM software based on the two-way coupling simulation of multi-body dynamics (MBD) and discrete element method (DEM). The effectiveness of this model is proved by comparing the difference in translational accelerations from simulation and experiment models. The experimental result shows that damping particles can obviously suppress the vibration of gearing; and the vibration suppression effect of the particle material, particle radius, particle filling ratio and rotational speed are also analyzed by means of the equivalent model.
關鍵字(中) ★ 阻尼顆粒
★ 齒輪傳動
★ 振動抑制
★ 多體動力學
★ 離散元素法
關鍵字(英) ★ damping particles
★ gear transmission
★ vibration suppression
★ multibody dynamics
★ discrete element method
論文目次 摘要.......................................I
ABSTRACT...................................II
謝誌.......................................III
目錄.......................................IV
圖目錄.....................................VI
表目錄.....................................VII
符號對照表.................................VIII
第1章 緒論.................................1
1-1 研究背景...............................1
1-2 文獻回顧...............................2
1-3 研究動機與目的.........................5
1-4 研究架構...............................5
第2章 實驗設計與分析方法...................7
2-1 實驗設備與架構.........................7
2-2 訊號控制及量測方法.....................9
2-3 實驗流程規劃及變數控制.................11
第3章 具阻尼顆粒齒輪傳動系統之MBD-DEM雙向耦合振動分析模型建立.........................................16
3-1 模型定義、假設及簡化...................16
3-2 MBD-DEM耦合模型原理....................18
3-2-1 MBD模型之系統廣義力及齒輪嚙合力計算..18
3-2-2 DEM模型中顆粒間接觸力計算............20
3-2-3 MBD-DEM耦合計算原理及流程............22
3-3 MBD-DEM耦合模型參數設定................24
3-3-1 MBD模型參數設定......................24
3-3-2 DEM模型參數設定......................26
第4章 模擬與實驗之結果趨勢分析與討論.......29
4-1 模擬與實驗之比對與顆粒效果之證實.......29
4-2 轉速及填充率對顆粒減振效果影響分析.....31
4-3 粒徑及材質對減振效果影響分析...........34
第5章 總結與未來展望.......................36
5-1 總結...................................36
5-2 未來展望...............................37
參考文獻...................................38
附錄A......................................41
作者介紹...................................44
參考文獻 [1] H.V. Panossian, “Structural damping enhancement via non-obstructive particle damping technique,” Journal of Vibration and Acoustic, Vol. 114, No. 1, pp. 101-105, 1992.
[2] M. Saeki, “Analytical study of multi-particle damping,” Journal of sound and vibration, Vol. 281, No. 3-5, pp. 1133-1144, 2005.
[3] N. Ahmad, R. Ranganath, A. Ghosal, “Modeling and experimental study of a honeycomb beam filled with damping particles,” Journal of Sound and Vibration, Vol. 391, pp. 20-34, 2017.
[4] C.X Wong, M.C. Daniel, J.A. Rongong, “Energy dissipation prediction of particle dampers,” Journal of Sound and Vibration, Vol. 319, No. 1-2, pp. 91-118, 2009.
[5] Z. Lu, X.L. Lu, W.S. Lu, S.F. Masri, “Experimental studies of the effects of buffered particle dampers attached to a multi-degree-of-freedom system under dynamic loads,” Journal of Sound and Vibration, Vol. 331, No. 9, pp. 2007-2022, 2012.
[6] S.C. Dragomir, M. Sinnott, E.S. Semercigil, Ö.F. Turan, “Energy dissipation characteristics of particle sloshing in a rotating cylinder,” Journal of Sound and Vibration, Vol. 331, No. 5, pp.963-973, 2012.
[7] W.Q. Xiao, Y.X. Huang, H. Jiang, H. Lin, J.N. Li, “Energy dissipation mechanism and experiment of particle dampers for gear transmission under centrifugal loads,” Particuology, Vol. 27, pp. 40-50, 2016.
[8] W.Q. Xiao, J.N. Li, “Investigation into the influence of particles’ friction coefficient on vibration suppression in gear transmission,” Mechanism and Machine Theory, Vol. 108, pp. 217-230, 2017.
[9] P.A. Cundall, O.D.L. Strack, “A discrete numerical model for granular assemblies,” Geotechnique, No. 1, pp. 47-65, 1979.
[10] Z. Lu, X.L. Lu, S.F. Masri, "Studies of the performance of particle dampers under dynamic loads," Journal of Sound and Vibration, Vol. 329, No. 26, pp. 5415-5433, 2010.
[11] S. Lommen, G. Lodewijks, D.L.Schott, “Co-simulation framework of discrete element method and multibody dynamics models,” Engineering Computations, Vol. 36, No. 3, pp. 1481-1499, 2018.
[12] Y.C. Chung, Y.R. Wu, “Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method,” Nonlinear Dynamics, Vol. 98, No. 1, pp. 129-149, 2019.
[13] P. Flores, J. Ambrósio, J.C.P. Claro, H.M. Lankarani, Kinematics and Dynamics of Multibody Systems with Imperfect Joints, Springer, Berlin, 2008.
[14] J. Liu, C. Wang, W. Wu, “Research on meshing stiffness and vibration response of pitting fault gears with different degrees,” International Journal of Rotating Machinery, Vol. 2020, pp. 1-7, 2020.
[15] K.H. Hunt, F.R.E. Crossley, “Coefficient of restitution interpreted as damping in vibroimpact,” Journal of Applied Mechanics, Vol. 45, No. 2, pp. 440-445, 1975.
[16] C. Pereira, A. Ramalho, J. Ambrosio, “An enhanced cylindrical contact force model,” Multibody System Dynamics, Vol. 35, No. 3, pp.277-298, 2015.
[17] D. Dabrowski, J.Adamczyk, H. Plascencia Mora, “A multi-body model of gears for simulation of vibration signals for gears misalignment,” Diagnostyka, Vol. 2, No. 62, pp. 15-22, 2012.
[18] R. Jabłoński, T. Brezina, Advanced Mechatronics Solutions, Springer International Publishing, Switzerland, Vol. 393, 2016.
[19] W. Van Bokhoven, “Linear implicit differentiation formulas of variable step and order,” IEEE Transactions on Circuits and Systems, Vol. 22, No. 2, pp. 109-115, 1975.
[20] H.Y. Chou, C.F. Lee, Y.C. Chung, S.S. Hsiau, “Discrete element modelling and experimental validation for the falling process of dry granular steps,” Powder Technology, Vol. 231, pp. 122-134, 2012.
[21] F.E. Richart, J.R. Hall, R.E. Woods, Vibration of soils and foundations, Prentice-Hall Inc., Englewood Cliffs, N.J., 1970.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2021-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明