博碩士論文 108323022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.23.102.79
姓名 劉哲瑋(Zhe-Wei Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具阻尼顆粒音響支撐架的動態反應
(An experimental and numerical study on dynamic responses of loudspeaker stands with damping particles)
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 為什麼音響玩家總是在音響支撐架填充鋼珠或石英砂來改善音響的聲音品質?這有趣的物理機制至今尚未深入研究與釐清。本研究採用離散元素法與有限元素法雙向耦合方法 (Two-way Couple DEM-FEM Approach) 模擬在市售音響支撐架中填充顆粒體的動態反應,進行對應的物理實驗驗證模擬結果,並進一步探討顆粒間摩擦係數、顆粒與邊壁間的摩擦係數、顆粒間恢復係數及顆粒楊氏模數對音響支撐架動態反應的影響,並作為音響業界選擇顆粒體的參考。本研究使用阻尼因子,摩擦消能效率,碰撞消能效率與總消能效率量化系統減振效果,並創新引入顆粒體傳輸性質(包括局部平均速度、擾動速度分佈及粒子溫度)探討顆粒體的減振效果。研究結果顯示:(1)消能效率呈現振幅相依性,隨著外力振幅增加,主導的消能機制由接觸阻尼消能機制轉變為摩擦消能機制。(2)顆粒性質影響減振效果,其中以顆粒楊氏模數的影響效果最為顯著,在一定的楊氏模數範圍顆粒體內部將出現調諧質量阻尼器,此時存在最佳減振效果。(3)當摩擦係數較低及楊氏模數與恢復係數較高時,系統產生較高的摩擦消能效率,當外力振幅增加,摩擦消能效率增加而碰撞消能效率降低,且兩者的變化量造成總消能效率下降。(4)模擬與實驗皆證實填充顆粒體能降低所有頻率的振動,尤其在1kHz以上的頻率特別顯著,並改變了音響1kHz以上的頻率響應。(5)填充較大楊氏模數的顆粒體能增加1kHz以上頻率的減振效果,卻降低1kHz以下頻率的減振效果。(6)減振效果與顆粒體軸向局部平均速度、擾動速度分佈及粒子溫度具有顯著的相關性。
摘要(英) Why do sound experts always fill the loudspeaker stands with steel beads or quartz sand to improve the sound quality of the loudspeaker? The mechanism of this interesting physical phenomenon has not yet been thoroughly studied and clarified. In this study, two-way Couple DEM-FEM Approach was employed to model the dynamic response of commercially available loudspeaker stands equipped with damping particles, and the corresponding physical experiments were performed to validate the proposed numerical model. The effect of particle properties, such as the inter-particle friction coefficient, the particle-wall friction coefficient, the inter-particle restitution coefficient, and the Young′s modulus of particles, on the dynamic response of the loudspeaker stands was further explored, and the outcome can guide the audio industry to select the appropriate particles. This study used damping factors, friction energy dissipation efficiency, collision energy dissipation efficiency and total energy dissipation efficiency to quantify the system′s vibration reduction effect, and innovatively introduced particle transport properties (including local average velocity, fluctuation velocity distribution and granular temperature) to explore the performance of vibration reduction effect. The main findings are highlighted below: (1) As the external force amplitude increases, the dominant energy dissipation mechanism transforms from the damping dissipation mechanism to the friction dissipation mechanism; (2) The particle properties affect the damping effect. Among them, the Young′s modulus of the particles exhibits the most significant effect. In a certain range of Young’s modulus, a tuned mass damper occurs inside the granular solid, leading to the best damping effect; (3) The condition with smaller friction coefficients and larger Young’s modulus and restitution coefficients provides higher friction energy dissipation efficiency. As the external force amplitude increases, the friction dissipation efficiency increases while the collision dissipation efficiency decreases. The resultant effect from both mechanisms causes the total energy dissipation efficiency to decrease. (4) Both simulations and experiments confirmed that filling particles into the loudspeaker stands can attenuate vibrations for the frequencies studied here, especially at frequencies above 1kHz, and change the frequency response of the sound above 1kHz. (5) Filling particles with a larger Young′s modulus can increase the damping effect at frequencies above 1kHz, but decrease the damping effect at frequencies below 1kHz. (6) The damping effect has a significant correlation with the local average vertical velocity, fluctuation velocity distribution and granular temperature of particles.
關鍵字(中) ★ 音響支撐架(喇叭架)動態反應
★ 顆粒阻尼器
★ 雙向耦合離散元素法與有限元素法
★ 物理實驗
★ 顆粒減振
關鍵字(英) ★ Dynamic response of loudspeaker stands
★ Particle damper
★ Two-way couple DEM-FEM Approach
★ Physical experiments
★ Particle vibration reduction
論文目次 摘要 i
Abstract ii
目錄 iii
附表目錄 vi
附圖目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 顆粒阻尼器應用相關文獻 2
1-2-2 顆粒阻尼器性質相關文獻 4
1-2-3 顆粒阻尼器模擬相關文獻 5
1-3 研究動機與目的 8
1-4 研究架構 8
第二章 研究方法 9
2-1 DEM-FEM雙向耦合方法 9
2-1-1 彈性連續體的有限元素模型 9
2-1-2 顆粒體的離散元素模型 10
2-1-3 連續體與離散元素的雙向耦合 12
2-2 ABAQUS DEM-FEM雙向耦合建模 13
2-2-1 ABAQUS數值分析 13
2-2-2 ABAQUS求解器 13
2-2-3 幾何尺寸 14
2-2-4 邊界條件 14
2-2-5 網格與元素 15
2-2-6 接觸性質與輸入參數 15
2-2-7 穩定時間步 16
2-2-8 負載與模擬步驟 17
2-2-9 分析參數定義 18
2-3 顆粒體傳輸性質 19
2-3-1 局部平均速度 19
2-3-2 顆粒擾動速度 19
2-3-3 粒子溫度 20
第三章 結果與討論 22
3-1 模型基準測試 22
3-1-1模態分析 22
3-1-2隨機訊號輸入 23
3-1-3振幅相依性 23
3-2顆粒體參數的影響 25
3-2-1阻尼因子 25
3-2-2摩擦消能效率 27
3-2-3碰撞消能效率 28
3-2-4總消能效率 29
3-2-5加速度響應 31
3-3顆粒體傳輸性質 32
3-3-1 局部平均速度分佈 32
3-3-2 擾動速度分佈 33
3-3-3 粒子溫度分佈 34
3-4實驗驗證 36
3-4-1 加速度響應 36
3-4-2 聲壓頻率響應 37
第四章 結論與未來展望 39
4-1 結論 39
4-2 未來展望 40
參考文獻 42
附表 45
附圖 47
參考文獻 參考文獻
[1] A.R. Timmins, R.E. Heuser, S. FlightCenter, A study of first-day space malfunctions, NASA (1971).
[2] H.V. Panossian, Structural damping enhancement via non-obstructive particle damping technique, J. Vib. Acoust. 114 (1992) 101–105.
[3] P. Veeramuthuvel, K. Shankar, K.K. Sairajan, Application of particle damper on electronic packages for spacecraft, Acta Astronaut. 127 (2016) 260–270.
[4] M. Heckel, A. Sack, J.E. Kollmer, T. Pöschel, Granular dampers for the reduction of vibrations of an oscillatory saw, Phys. Stat. Mech. Its Appl. 391 (2012) 4442–4447.
[5] Z. Xu, M.Y. Wang, T. Chen, A particle damper for vibration and noise reduction, J. Sound Vib. 270 (2004) 1033–1040.
[6] Y. Liu, A. Sanchez, M. Zogg, P. Ermanni, A comparative experimental study on structural and interface damping approaches for vibration suppression purposes, in: M.N. Ghasemi-Nejhad (Ed.), San Diego, California, USA, 2010: p. 764335.
[7] P. Bartkowski, R. Zalewski, A concept of smart multiaxial impact damper made of vacuum packed particles, MATEC Web Conf. 157 (2018) 05001.
[8] A. Papalou, S.F. Masri, An experimental investigation of particle dampers under harmonic excitation, J. Vib. Control. 4 (1998) 361–379.
[9] R.D. Friend, V.K. Kinra, Particle impact damping, J. Sound Vib. 233 (2000) 93–118.
[10] Wu C., Prediction on Vibration response of cantilever particle-damping beam based on two-phase flow theory of gas-particle, J. Mech. Eng. 49 (2013) 53.
[11] Z. Xu, M.Y. Wang, T. Chen, Particle damping for passive vibration suppression: numerical modelling and experimental investigation, J. Sound Vib. 279 (2005) 1097–1120.
[12] J. Rongong, G. Tomlinson, Amplitude dependent behaviour in the application of particle dampers to vibrating structures, in: 46th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., American Institute of Aeronautics and Astronautics, Austin, Texas, 2005.
[13] J.F. Chen, J.M. Rotter, J.Y. Ooi, A review of numerical prediction methods for silo wall pressures, Adv. Struct. Eng. 2 (1999) 119–135.
[14] Q.J. Zheng, A.B. Yu, Finite element investigation of the flow and stress patterns in conical hopper during discharge, Chem. Eng. Sci. 129 (2015) 49–57.
[15] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Géotechnique. 29 (1979) 47–65.
[16] C.J. Coetzee, D.N.J. Els, Calibration of discrete element parameters and the modelling of silo discharge and bucket filling, Comput. Electron. Agric. 65 (2009) 198–212.
[17] X. Fang, J. Tang, Granular damping in forced vibration: qualitative and quantitative Analyses, J. Vib. Acoust. 128 (2006) 489–500.
[18] M. Saeki, Impact damping with granular materials in a horizontally vibrating system, J. Sound Vib. 251 (2002) 153–161.
[19] W. Xiao, J. Li, T. Pan, X. Zhang, Y. Huang, Investigation into the influence of particles’ friction coefficient on vibration suppression in gear transmission, Mech. Mach. Theory. 108 (2017) 217–230.
[20] C.X. Wong, M.C. Daniel, J.A. Rongong, Energy dissipation prediction of particle dampers, J. Sound Vib. 319 (2009) 91–118.
[21] C. Gnanasambandham, A. Schönle, P. Eberhard, Investigating the dissipative effects of liquid-filled particle dampers using coupled DEM–SPH methods, Comput. Part. Mech. 6 (2019) 257–269.
[22] Y.-R. Wu, Y.-C. Chung, I.-C. Wang, Two-way coupled MBD–DEM modeling and experimental validation for the dynamic response of mechanisms containing damping particles, Mech. Mach. Theory. 159 (2021) 104257.
[23] Y.-C. Chung, Y.-R. Wu, Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method, Nonlinear Dyn. 98 (2019) 129–149.
[24] K. Murugaratnam, S. Utili, N. Petrinic, A combined DEM–FEM numerical method for Shot Peening parameter optimisation, Adv. Eng. Softw. 79 (2015) 13–26.
[25] R.E. Spears, S.R. Jensen, Approach for selection of rayleigh damping parameters used for time history analysis, J Press Vessel Technol (2009) 26–30.
[26] Z. Xia, X. Liu, Y. Shan, Application of particle damping for vibration attenuation in brake drum, Int. J. Veh. Noise Vib. 7 (2011) 178.
[27] W. Lin, C. Su, Y. Tang, Explicit time-domain approach for random vibration analysis of jacket platforms subjected to wave loads, J. Mar. Sci. Eng. 8 (2020) 1001.
[28] ISO 226:2003 Acoustics — Normal equal-loudness-level contours
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2021-9-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明